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INVARIANT MANIFOLDS I

Jaroslav KURZWEIL , Praha

Introduction. Let M be a submanifold of a mani-
fold N, U a neighbourhood of M ,f: U— N a c”
map such that IM :M— M is a diffeomorphism onto
M . There are found conditions which guarantee that for

CM)

any g : U— N sufficiently - close to f the-

re exists a submanifold M

-
: Mg'-—> M9 is & diffeomorphism onto Mg_ . It is as-

of N such that 9"M9_ d
sumed that U is diffeomorphic to a subset of E, and
the theory is developed on E , E is a bundle which
differs from a vector bundle in that that bundle trans-
formations preserve fibres but need not be linear on fib-
res.

This is motivated by an application tuv delayed
differential equations, which will be published separa-
tely. In this application, E, is the set of continuous
maps a :<{-41,0)— M M ‘being a manifold. For x €
e M ) Ex - the fibre over X - is the set of such
4 € E that w4 (0) = x , There is no natural vector
structure on E x and therefore it seems preferable to

restrain from it from the beginning.
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Main Theorem is proved for Cm -maps f in case that
M is attractive exponentially. It can be extended

formally to C*

-maps and to the case of a hyperbo-
lic structure of f near M . In this problem, unifor-
mity properties (such as uniform boundedness and uni-
form continuity of differentials of certain maps) are
of special importance.

Notations, Assumptions and Main Theorem are for-
mulated in § 1, § 2 contains the proof of Main Theorem

and in § 3 the theory is extended for the flows with a

continuous parameter.

$ 1. Notations, Assumptions, Main Theorem
w: <0,00) —> <0, co) will be called a

modulus of continuity, if it is continuous, nondecrea-
sing and @w (0) = 0. If Y is a Banach space, a4 €
e Y,p>0,then B(y,0) = B(Y,n,p) =
={xeYllz-nyl<p}.

Let M be a Hausdorff space, 5(, ~ a Banach
space, [ - a set of indices, {l:l‘- 124 € I 3 an open
covering of M, & : ¥

Definition 1.1. {(l:li,é‘-)}l% €I 3 is called
a uniform C“) -atlas on M , R = 1,2,... provid-
ed that there exist K, & 41, R, >0 and a modulus

i —> x homeomorphisms.

of continuity co1 such that
(1.1) é‘.' (ﬁi) is convex, 4 € I ;

(1.2) for any x e M there exists an 4 € I such

and ﬁ(é‘ (.x),QR,,)C & (ﬁi) H
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(1.3) maps 9;.4 = é} ° ?:;" are continuously dif-
?

ferentiable up to order /& and
IDG; , 1,1D%; . I,... ID*,, €K,

0 o (Y .
at any v ¢ 9”4 (LL4; N u,’.) and D P;4i admits

@

), @s a modulus of continuity (i.e.

NG5 (v - Dy ()l & @ Cllay, = g 1),

Two uniform C“’-atlases are called equivalent,
if their union is a uniform (‘) -atlas; the equiva-
lence class of such atlases defines a uniform C‘h) -
structure on M . M together with this structure is

c(h)

called a uniform -manifold.

C“ —panifold

Assume that M is a uniform

and 1 (0,914 €13 & uniform C? -atlason M.
A - ~ A

Let X be a Banach space and put X = X x X .

Let the norms in X, X, X be given in such a way that
(1.4) mac (IZ I, IS D) & Ixl & RS0+ 1KT

—~ ~ ~ A A A
if x=(X,%8)eX,¥eX , XeX , vy P,P
denote projectors, Px = & , Px = & .

Let there be given a Hausdorff space E,r:E— M,

m(E)= M, open sets U; c E  and homeomorphisms
@:U, — X for i el, and R,> 0 such that

(1.5) Ua.' c :n’"'(ﬁ‘-‘ ) and ¢4 o Jr(w) =T’ch.(u')

for w € Ll;', 1 el ;
1.6) @, (U)x BX,0,R)e g (U), iel;

(1.7) if ©w e u;,

wlurelly, i,361,Peg w)=0;
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then «u e U; amd f"oga’;(u) =0.

. ot
-1 are uniform C’)-meps,

(1.8) i = PR

in detail, ngyﬂ; v ) % K4 at any '€ @; (len u},)

and D9’4‘; admits ¢y, as a modulus of continuity

v,4el.

Put J; =Pe P, & sPoga,_, g;’; =P Fi»
g)é,;, =P Do 33,4 € 1.
By (1.5) and (1.6) it follows that
(1.9) ) =0, G )= (W), cel .

Further, (1.5) implies
(1.10) Let x, npe U, <€l . Then r(x) = 7(ay)
itf F(x) = G, (y)

Hence
(1.11) if (&, &), (& ‘9‘)5991,(11 nu.) t,4el,
then

%ﬂ(u u)=g7 (a, ),

that means @; ; preserve fibres.

Define 6: M—> E, as follows: for x€ M
find 4 € I such that x € l‘.’l.‘; and put 6 (x) =
=¢;1 (9’7‘.' (x), 0) . It follows from (1.4) that

gi-(.x)sy}_ ©Jre6(x), hence x = e 6(x) .
1t xe U, 4el, thenby (1.6) ana (1.7) 6(x)¢€
eu?- and 29} e B(x) = (é’- (x),0) . Therefore

6 (x) does not depend on the choice of 4 . Obvious-
ly Te 6= 1d and f’og:,.os'(.x)so if.xeflé.
Derine U] = fxe ;| B(P; (x),R,)c, (1,13,
u,‘_;- u“:ﬁﬂ"'(a:), 1 €l . It is easy to see that
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(1.12) 9"’13 (ﬁ.: ) is convex and for X € M there
exists 1 € I such that x € 1‘11 and

B, (x),R,) e (UL,

(1.13) &, (0}) =, cut) ena B (U]) =
xB(R,0,R,) c g, UL ,

(1.14) gr(ul) = U}

Put
. © .
S={p:M—=Elmons =4id endif.xeu:;,aeI,

then A (x)e W3 .
A

For neS,iel let 4, :F (U;)— X  be defi-
ned by

(v, m(r)) = @, 050(P,) " (v)
Elements of S are called sections.
For;a,l’_, >0 1let S(DfFf,p L ) be the set of such
5 €S that all A, < €1 are continuously differen-
tiable, s, (v)lg ©, IDs; ()l & L for v €
€ ﬁ‘.‘ (U1 ) . If £ is a modulus of continuity, let
S(Diff,P,L,ﬂ-) be the set of such » € S (Diff, o L)
that 5, admits {1 as a modulus of continuity, ¢ e I.
Obviously 6 € S(Diff,p,L, L) forany o L A .

For © > 0 put

1 A

Ef)=ix e U Ul (Il & p if xel), jelf.

For £:ECR,) —> E putf =g «fe g7,
7 ~ -1 2 - ..
{;ﬁ;- qg of’og&1"%b4 - é% o fo 9k1’ .pz’_‘ I,

(i.e.- f’-,;‘ is defined on g; cu_; N F"(u’. )) eand
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for xz'(f,ﬁ)e ®; (uinr'(u’-)) the va-

N o~ A
lue of f; .  will be denoted by f; ; (x) orf XX
. . Y . A .
:D,, ‘F""; is the differential of %,‘; if & is kept

3 3 K3 . K3 A
fixed and jD2 f’._”. is the differential of 4""4 ,if X
is kept fixed.

Assume that there is given a continuous map ¥ :

:E(Rz) ~> E and positive K,,%, f, $,K2g 1,41,
§<1,§<1,and a modulus of continuity cJ, such that

(1.15) ¢ |6’(M) +: 6 (M) — L is a homeomorph-

ism onto @ (M) ;

-1
(1.16) D 9’-’4 exists at any v e @, (U, n f (LL;.)) ,

ID%,‘ ()l & Kz and Df:‘ﬁ- admits <, as a mo-

dulus of continuity;

(1.17) D, ‘?;,‘; (@a,0) is a toplinear automorphism
~ B
of X 3

~ -1 -1
(1a8) (D E; ca, 0Nl & q

.
?

’

aan WD T, 00ef
(200 WD, @, 0 pE (@, 0r'e ¢

~ -1
((117) - (1.20) for (&, 0)e g, CU; A £7(UY) ).
(1.15) implies that

a2 &, (2,00 =0 ena DE,(Z,0)=0
for (Z,0) e @, (U, A £7(U;)) .
Let ¢ : E(R,) —> E be continuous.
Definition 1.2. Let € > 0. @ is said to be

€-close to f (& ~ C! -close to f ) if x € u}n
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AE(R9_7,¥(><)¢U.;-" i,3e€l imply that
g(x)e Uy, Dg«;,._- exists at v = @, (x) and
(1.22) g e g (x)-@; o f €€ (ie. Vg (v)-f, (ll£e),

(1.23) ﬂDq«’-"; (w)- Df;-r; ()& € .

Main Theorem. There exists L, > O end to L,
0<1l, = L1 there exist € > 0,@>0 and a
modulus of continuity () such that

if g is € -close to f , then there exists
n=nlgle S(Diff, @, L, ) such that glo (M) :
tn(M) — E is a diffeomorphism onto s (M) .

Moreover,

(1.24) g (E(p)) c E(p) ;
(1.25) if xe E(p)n ul,/y_,sq,"(.x),ry.eu;'_, v,5€l,
M being a positive integer, then

A v ) A ~
U3, () -y 0 &, ()& K, §7 19, (X)=py e F (I,
G=f+re+L(K,+e) .

Note 1.1. L, depends on K,,,Kz,R“Rz,?, §,

§,0,,w, butnotonM,E f,9; ¢, ¢ and f

depend, in addition, on L . Observe that E,' is ar-

bitrarily close to § for € and L sufficiently

small.
Corollary 1.1. If a4 € E (p) y if ,kz are in-

tegers, £ = 1,2,3,..., ky —> 00 with £ — oo

and if there exist x, € E (@) such that 9,‘2 (x,) =

= @ , then (by (1.25)) np € n (M)
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Corollary 1.2, £ is unique in the following
sense: if e S, »(M)c E(p) and if for every
4 € (M) there exists x € » (M) ~ such that
g(x)=ng, then » = fo .

This follows immediately from Corollary 1l.1l.

§ 2. Proof of Main Theorem

Let the assumptions introduced in § 1 be ful-
filled. Let 1., @, € be positive. Conditions on L |,
@, € will be introduced step by step.Let g : E(R,)»
—> E  be continuous and € -close to f .

Lemma 2.1. Let 0 < ov < 3 , 1let @ bea
topological space, Y a Banach space, V¢ ( open,
y: V=Y h:(0,1>>V, v, A both con-
tinuous and suppose that

(2.1) A (0)eV, Blyeh (0),B)c y(V),

(2.2) it M(A)eV  for some A €(0,1), then
Dye exists at A and IDye h(A)l € o |

(2.‘3) it b (A)e V for 0 € A < for some T £
#1 and if H=_lim ye h (A) exists and H ¢
ey < :
€ y(V), then h(z)eV .
Then h(A)eV,yoh(A)e B(yeoh(0),3) and
Tyeh (M-yoh(ANeaxlr-2 | for A, A, €€0,15 .
The proof is standard.
Note 2.1. Observe that (2.3) is fulfilled, if

4/ is a homeomorphism.

- 316 -



Lemma 2.2. Let o > 0,3 > K,0,%,4€ I, xe u;,

1@ £ p,_'f'(.x)e Ué,ﬁ(x,% o*F(x),/J)c%(ué).
Then
(2.4) l%o{’(ac)ﬂécg-f-a)z (N .

Proof. Put & = @, (x), v =(§;(x),0) ,
() =Fo g (U+A(vr-wu)) for 2e<0,15 .
Apply Lemma 2.1 (ot = K, | Va W, ¢ = @;

It follows that foq@; (ww +Q (r-w)) ¢ u,:; for
Ae<0,1y,i.e. 4’;',1.‘ (w + A0 = ) is defined
for A € <0,1)>. As %({v) e 6(M) , (1.15) imp-
lies that fe @, (+#) € (M) ,H1ie, ‘?,,,;(v)s'o

1 A
Bof) =& wrm - /DY s (wrd (rowVdAtwr-w) .
By (1.19) ena (1.16) NDZ. Codl & §
ID%, (w2 (v-i)-DE o) & e, (A=A N N &

£, (@) and (2.4) holds.

Assume that
(2.5) K,p+e <min (R ,R,), 2K, 0 <R, .
Lemma 2.3. Let x & E(p) . There exists & ¢ I

such that £(x), 9.(.x) € LL'L and
(2.6) 1§, fOII& (fralpNe |,
(2.7) 13, + GG & (f+ (NP +E .

4
Proof. Choose 1 & [ such that x ¢ U ,

put u.-q:‘.'(.x), Vo= C&i(.x),a) . By (1.15)
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fogltrre €M) | as g'trre e(M).
Find £ € I such that :r.#-g’:(fv—) € L'LL and

° -1 o °
B (Gomefeq, ), R)e ga,.(u},) (ef.(1.12)).
That means

4 1 - P -
‘f'?i e Lk,ﬁ@_~°f’¢ﬂ’(v),&, )C%(%),%n-fo%"(v)-a
Put h(A) = Ffog!(red (w-2)),4€0,1) and ap-
ply Lemma 2.1. It follows that -F(o()--f"-y‘-’"(@)e ul
and ﬂ%o f(x) - R° feo %”(v)u & K, © . There-
fore, by (2.5) and (1.6) B(X, g of(x), K, o + )c
c %(Ll.h) for some ¢ > 0 sufficiently small and
(2.6) follows by Lemma 2.1. (2.7) follows by (2.6)
and Definition 1.2 and finally g.(ac) € U.'L by (2.7)
and (2.5).

Assume that

(2.8) (g+o)($o))sp+}(1 E<p ,

(2.9) K1§>+K2§>+2K4€ < min (R, ,R,) .
Lemma 2.4. Léter(p)nu:;,t-gq‘(x) ,

g,(.x)eu;, i, € I . Then f(x)e U; and

(2.10) Ngy o F(x) - g gCx)l & K&,

(2.11) 1D (£)=Dgys (N & K, e+ K o (),

(2.12) 1@y 0 g ) < @ -

Proof. Find A &according to Lemma 2.3 and

put M-(ﬁ,.&)‘%'g’("‘)r v=(Z,0),
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(M) = @l (v rACr-n)), 640,15 -
Ko g(x)=M (1) ¢ U} , it follows (cf.{1.14)) iuat
o g(x) e 1), by (1.10) e (A) = o g (x)

for A € €0, 1), i.e. ;ro S (0) € U} . By detinition

] o 4 ° 4
of Uy, U: and by (1.7)h(0)e Uy, & oh(0)=0.
Apply Lemma 2.1 (cf.(2.7),(2.8),(2.9),(1.8)). It fol-
lows A (A) € U.?- for A €¢<0,41> and moreover,

M) e U forAe<0,1), 88 7o h(A) =

= o 9-(« e L.l; , Consequently g?é e g (x) =

1 1
= [DF; e hQ)d A= [DG fred(u-vNdA (u-v) ,

(2.13) lé‘:’. eg(x)l s K (p+€) .

Put we gy o f(x), b, (M) =gl (w+A(w-u)),2e€0,1)
(cf.(1.12)). Lemma 2.1 applies again (cf.(2.13),(2.9),
(1.8), Definition 1.2). It follows that f(x) = 4o, (1) €
€ 'Llé , and that (2.10) holds.

By (2.13),(2.10) and (2.9) Lemma 2.2 applies and (2.12)
follows from (2.4),(2.10) and (2.8).

Dféﬂ.’ C'!:)-:Dg%,*'(-f‘ﬂ. ty OIDf“’; (t) end an analogous
formula is valid for Dg.‘.‘. (t) . (2.11) follows from
Definition 1.2, (1.8) and (1.16).

An immediate consequence of Lemma 2.4 ‘is
(2.14) g(E(p)) c E(p) .

Assume that

(2.15) w, (@) + K2L+(K1€ +K, @, (eN<n .
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Lemma 2.5. For s > 0 there exists 2¢ (x) >
> 0 having the following property:

Let » e S(DiFF @, L), i, 46l and
define the map & by 6(f)= 6;,:, (i, b, (G
for all 7;; that the right hand side makes sense. Let
LeF Uy, BW,ade §uy) ,Fegcul),
B, ) (uy), & =6 .
Then ©-' exists on B(x, e (r)) and is

continuously differentiable.

’

Note 2.1. The actual value of 22 (2) is irre-
levant in what follows. It is sufficient to know that

% (x) is positive and independent of <,3, ¥ .
~ -1 ~
Proof. Put 64:(12'?;-’4(”,0)) °o8 , % =
~ - ~
= ('Da f5, (¥, 07X and solve

[

(2.06) % = 6, (%) = 8, (F)+ 5 - F + Z(F)

for ¥ close to (D, '?;.,i. (#, 0 Nz instead of
X = 0f) .
Write .
(2.17)  O(§) = 6(F) + D ¥, (%, 0)(F-F) +
v U8 L (R a0 - @) - DT, L (7,00 (-1 +

Y G G-F o, G

It may be shown from Lemma 2.4, Definition 1.2 and (1.8)

that there exists d; (k) >0 such that (2.17) holde

for A e B(¥F, F(n)) . From (2.17) and

(2.16) it may be found that ”?.-4(‘*’4.(9)"' K2L+(J<1$ +

+ ch.{' (e)) is a Lipschitz constant for =, 2 (¢¥)=0
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and Implicit Function Theorem applied to (2.16) makes
the proof complete (cf.(2.15)).
Lemma 2.6. let Q< 1 < R“/aGS(Dtﬂ',;o, L,

pel,XeUlngonmy, BEZ,n)e F (UL .

Then B(Z,ee(n)) c F(U;AgerlM), selx)
being the same as in Lemma 2.5.

Proof. Find z € A (M) such that L =
=$ °g(x) end i el ouchthat x e [FAA
B (z),R)Hc g (ul) (6. (2.12)). Lemma 2.6
follows from Lemma 2.5, as X € @Cuénq, s H(M))
if there exists 4, such that ¥ = @(4) .

Lemma 2.7: Let » € S(Diff, o, L) . Then
Mogen(M)=M .

Proof. Let x ¢ M . Find j e I such that
xel}, B(g(x), R, & @ (UY), i.e.

H

6’(x)¢>u1,'13(g:406’(a<),R1) c y‘(u;), P 0 6(x) =0,
There exists 2 € 6 (M) such that f(w) = &(x)
(c£.(1.15)). Find { € 1 such that w ¢ W), end
put v = @, (w)= (F,0), u= (& r, (), xsgf(u-),

hA)= fog (ver(~2)) forAel0,1>.
Obviously 2 € 5 (M) . Apply Lemma 2.1 (cf.(2.9)). It
follows that #(z) € Uy, Ig e f()-g o Fw)l & K, 0 .

Hence f(x) € U.; and ﬁ(ggﬁf(x),ZS)c ) (LL:—_ ).
By Definition 1.2 g(z) €W, Ig egx)-gef(x)N & € .

Therefore g«(z)eu.‘,ﬁ‘gi ¢g(z),€e)c %(u )
B e g.(z)e)c%lua),% q,(z)ep‘,(uing.'/.(M))
-3 -



Apply Lemma 2.6 (step by step on
(@ egI+A(Fe0x)=F egzNA e<0,1)> ).
It follows that 655 ° 6 (x) 69'3; (u; Ngen(M)).
That means that there exists t € » (M) such that
%’ 6’(.x)-g">; eg(t) andx-:rcg,(t),asﬁ=g°:’.vdr
end e 6 = 4d .

Assume that

(2.18) 2K, (1+L)(K,p+£) <R,

?

(2.19) K, L+(1+L)c, ((1+L)7" 2(K +EN+e(1+L)< 7y .
2 2 2

Lemna 2.8. Let » e S(Diff,p, L), x,,x, € (M),

5!'09,(.)(1)-:1'09,(.)(2) . Then X, = X, -
Proof. Find 3 € I such that JT’Q,(.X4)€ fL4 ,

B(gomegx\RIcG (U) (c£.(1.12)), i.e.

G (x,),g(x,) e U (c£.(2.14) ana (1.13))
and B(F cg(x,)RIcF W), Feglx,) =

=3 °g (x,) (cf.(1.5)). Similarly, find £ € I such
thet x, € uz , .13(@:. (x,),R,) ?& (u‘,; ) and put
u,‘=(4'14,12,‘)-%(a5,),ry,'=6’0ﬂ(o§,),%-d’osr(x¢),qg=g?‘(fy.;,).

A ~
It follows that il = 4, (&), & = (& ,0) . Ac-

cording to Lemma 2.4 f(x/) e U, lp; - fix ) -
% q«(.x,‘)ﬂ\‘ K,‘a , hence (cf.(2.9),(2.14))
fix e u‘é ) Mgy o f(x ) - @eg(x )& € by De-

finition 1.2 and B(F «F(x), K, 0) c @ (U)
by (2.9). Put M (A) = £o g (e, + 2 (o - 4))  for
A e<0,4)> and apply Lemms 2.1(V-u;,1y- ﬁ’-,x- Kz)'
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It follows that f(g, ) e U, 44 1 0 #Cq) -

—GEx N EK, @, 1P 0t 0y Fog(x)&K,P+e
Similarly f(y, ) € u;-

ang llg',é.{e(,%)-@ °4’("‘a e
£Kp+e e g e fly)-Foty, e 2KPre)
(as ?, °g(x,)) = P @(x,) ). Apply Lemma 2:1 putting

1
Q =15<M) Y V=W n8M) | =g, , I, ()= (Flgopgy) e
o g (g e fly (G ofly) g oflyM, 2Ae<0,1)
( 4, is well defined, as @; (u,; ) is convex, ¢f.(1.12)
and (1.13)). Doy o by () =~ (D & ; Car 1IN
W (A = (G o f (y )+ Ao f(y,)-F £ (a,),0) .
Therefore by (1.18),(2.18) and Lemma 2.1

ﬁ2=§‘:(ry«z)eﬁ(42;,R4) )
(2.20) NiZ,-& Il &€n"2(K,pre) .

4 4 ~
Find L € 1 such that f(x )e u,, 73(97‘04(&,),]24):
~ 1 -
cF, (W) . Put J, (M) =Fo@'Car, + 2 (ay - a2,)

and apply Lemma 2.1 with @=E V= u;,qfs @'e, oc=K£(4+L)
(cf.Lemma 2.2, (2.8),(2.5) and (2.18)). It follows that
»%2(.1) '3 u.', for A € (0,1% and by Definition 1.2

g° 97;1(441,+a,(u2-44,,)e U, for A e<0,1> -end
1D ; e+ Caty - 04, =Dy Caty#2 (g =, NI & E
4 ~
(2.21) 31" 9‘("‘2)'% aq,(xq)s_(;])%,‘.‘(%+a,(uz-% 7)(44.2-
- u)dd =D F () (B, 3+ B

- 323 -



DGy, (wy+2 (ut, 44,0 (a, - u.)=D ('v')(d -a,)+
+D, %, (v Xn, (,)-1, Cx N+DE, (a. . Caty= 18, 0-D , )],

(w,- )+ DGy ; (e + A (abym 4t )) =
- Dﬁ‘ (u. +$\.(u.,_-u. NI (wy =),
hence (cf.(1.16))
IZ 0 & [KL+(1+L)e, ((1+L)7 " 2(K, p+E)) +
+e({+DINZ,-& <&, -a I .

By (1.18) ID % ; () (@,-a)2 &, - & I , therefo-
re by (2.21) e g, (x)#F cg, (x) endareg, (x)s
% ;e @, (x), whiéh contradicts the assumptions of

Lemma 2.8.

Lemma 2.9. There exists a unique map
¢*: 8 (.'DH?, @,L)— S such that g*(s)(M)=gon(M).
Proof. Let AeS(Di'H’ @,L). Lemmas 2.7 and 2.8
imply that for x € M the intersection s (x)n go s M)
contains just a single point which will be denoted by
% (X)), Thus x: M — E(p) is defined, x € S (cf.
(1.13) and (2.9)) and @*(s) =z .

Assume that

(2.22) (K, &+ K, (e )+, (@NU+ L+ K, L e n (1-§)L .
Lempa 2.10. Let s € S(Diff,p,L). Then g* () €
e S (Diff ,.p, Ly .
Proof. Put g*(sn) = = ., Let j € I,Eeia-_(u.}_),

x-y:(a,x,-(a)) - Aaxezxz(M)=g°nr (M),
there exists a € 5 (M) such that g (4)= x . Find
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< € 1 such that y ¢ LL:-' and put v = (F, )=

=g, (ny); & =, (F), a8 np € 5(M) . Hence

(2.23) T = G, (F, 4, (F)), 2, (&)= Gy ; (TF, 5, (F)) .
By Lemma 2.5 X is continuously differentiable on
some neighbourhood of L . By (2.14), bz, (@) & o .
It remains to prove that
(2.24) IDz; (X)I &L .

By (2..20)

(2.25) Pz" (47—)' [D1 @"’& C’IA;', /34 (’ilv" »+D2 aé,-i (1’;,/31;('2?))0

o D, (#)10 [D, G ; (B m, EN+D, ;5 (1, () D, 3 =
A ~ ~ ~ -4 (p—

=DF [ {#00eDs, F)[DF, (0T +Z .

(2.26) ID. %, .

&L ,000 D8, (e [0 (#0074 ¢ L.

To estimate = , put

A=1D

15,0 ,000D, (%), B=DF, . (7,00 ,

A+E=D§; @, 5, (FN+D,§, ; (Fn, (FNeDr, (%),

B+H=D§, (% s, BN+ DG, , @, 4, (FNeDs, (¥) .

It follows that
IAeB™'Il € ¢L  (er. (2.260),IB "I & 9"
(cr. (1.18)),
IEN & (K,‘g‘o-an‘,(e)-o-wa(‘o)) (1+L) = e,
(ef. (1.21),(1.16), Lemma 2.4),
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(2.27) IHI & KoL+ (K e+Kyeo (€)+ @, (PN (1+L)= 2,

E=(A+E)e (B+H)"'- Ao B =
=AoB((id+He By "= id]+EeB o (id +HoB"),

(2.28) 1= I & § Loy "oe, (4-7"0e, 7"+ 0¢, "1 - 77706, 0",

(2.24) is implied by (2.25),(2.26),(2.28) provided that
L+ ;Loz"'aez('i-oz"oez )‘1+"'2"e»e1 (4-42"«2 Y'e L,
ie. ce, +L2e, & (1- §)m L , which is (2.22).
Note 2.2. If »e S (Diff,p, L), 4,4 €1, e uy),
TeF (U, =g, (F 5, (¥)) then
A

(2.29) NID G, , (% 0, (T N+ D, 8, , (T o, (8o Dy (3T N4 (7-06)”,

%, being defined in (2.27).
This is a by-product of the proof of Lemma 2.10,

as the right hand side in (2.29) may be written as

1B~ (id+ Hoe B=N"N .
For 1 >0 put Sn)={neSIA(M)cE(r)}.

Observe that if xe E(x), x ¢ uf;, »€S(n),0<n <R,,
then 5 sr(x) € Ll.:: so that 4, o ﬁ (x) is defined

(ef. (1.13)).
Defipition 2.1. For xeE (@), », 2 € S(p)

put )
bx, sl = int (NG, (x)-my oG, (x| iel, xell, 3 ,

(2.30) hm, 2l = mac (oup Ix, 2l sup Lx,nl)
% € » (M) xe€ z (M)
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Lemma 2.11. (2.30) defines a metric on 5(@)'

Note 2.2. If xe U;nE(p), se S(p) , tne"

Ix . 5l & llg"% (.x)-qoat(x)ﬂf K,lx,s1ll . This fo110"®
by (1.8) and (1.11).

Assume that
(2.31) §, = §+e+L(K,+€) < 1

Lemma 2.12. Let x e E (@) ,»eS(Diff, @, L) "
Then

g (x), g*(p)l & § Ix,nll .

Proof. Put g*(»)=z. Find 4 ¢ I such that
g (x)e U], B(F 2g(x), R,V e §; (ul) . cnoose
41 € 1 such that x € u',; and put = (&,8)= %(.X),
v (Zp, (AN, M) = fo gl (U + A=) .
By Lemma 2.4 h(0)=f(x)e Uy, Igseh (0)-goglx)l 4 K, & ,

hence g of(x) e, Igueflx)-guoqlx)ll & & by Defi-
nition 1.2 and B (F ¢ F(x), R -€) c & (uy)
(cf. (2.18)).

cf, Lemma 2.2,

Lemma 2.1 (V= Ll;-,'qfﬂég, oK = Kz ’

(2.8)) implies that M (A) e u’,;

1
9(@0)»(.?\),]24-6-2](2@) c g (u;.) for A € €0, 1> .
Therefore (cf. Definition 1.2 and (1.15))
g,eqf(u+a.(v—.w)) € 'Ll;- , HDQ,’-“.' (w+d(vr-«) <
“Milurr(v-uNlb e, IDg (s rr-uNg
&K, +e.q°q]'a)ex (M),

as ?;1 (v) € (M) 3 therefore a.’..&Cv)- zé'ggﬁ ).
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observe thal P ¢ @ (x) = g ; («) . Hence

(2.32) hg(x), z & Ilé’.ag,(x)—z#.é;.ag.(x)‘ -
=Ny )= 250G (w813 ()= G ()l +
+|,‘e;’.ﬁ6v)-z‘-$,.ﬁ. Iy )G, )

o [D§, WA (v (r-)ed |

04 ()= G N8 (Kt €)llrm e b (K1 €909 Cx)- 50 5,000

(2.33) hz,° § () 205, (& LK+ €19 (x) -
_;,,,.a;‘cx)l,q,-‘.;cv)-a,.ﬁ. (W)= /51’%,.- (b + A (v-ie)) (1
~wlda = [ DG, hrd - (D21 AR

‘D,'Qf"; w+d(v-uNl & WD, €0 Co i +
+1D, a’-"(uo-a-Cv-u»-]?l%"(v)l €+, (2p)

(2.34) 1G5 ()= 3, [Culh 6 (@ (2NN, (x)-s; 0 G5 GO

(2.31) - (2.34) imply that K g (x), g*(s)l &
& g; 1@; (x)-4°F ()| and Lemma 2.12 holds, as < ful-
fils no other condition than X € u.'_; .
Lemma 2.13. Let »,x ¢ S(Di#f, @, L) . Then
Ig* (»), g¥x) & §, 1n,zl .
This follows immediately from Lemma 2.10 and Definition
2.1,

Lemma 2.14. Let 0 < x <41, 0< 3 <1 | 1let
@, Dbe a modulus of continuity,y > 0,a(y)=2L1-a).

Then there exists a modulus of continuity fL such that
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(2.35) Q(A)=2L for 22 B3y, Q(BA) 2
;Wﬂ(.ﬁ.)+w3(.$\.) for 0 ¢ A & 39 .

To prove Lemma 2.14 it is sufficient to put
T = /3“7 , % =0,1,2,,.. and to define L

by N(A)= 2L for A & 7, eand then byN(3A)=
= L(A)+ cy (L) step by stepon (7, , 7>,
<%, 7,%, ete.
Assume that
(2.36) ¢, + 2¢, + L(§+9e )< m(1-¢) ,
%, =, (p)+ K e+ K c5(e) 0, mae, +K, L.
Lemma 2.15. There exists such a modulus of conti-
nuity £l that

g."s SiM, e, L, 0)> S(Duf, o, L, N) .
Proof. Let fl be a modulus of continuity, » €

eS(Ditf, e, L, ), g*A) = x . Let jel,
~ ~ ~ 1 P A
&y, iy e g (U , N, - &, h< (n-2¢,)(1+LY' R, .

As g'lb(M):"(M) —s x(M) is bijective (cf.
Lemmas 2.8 and 2.9), there exist x X, € 4 (M) such
that ﬁu- @; ° q,(.x‘.), Ao =1,2 . Find{el such
thet x € U, B, RIcG W), = (&, & )= g (x,).
Denote by G: z (M) —> A (M) the inverse to glycm) ¢
t:A(M) — =z (M) and put .
h)=Gog (@ v 0 (&,- &), 24 (e M (Z)- X)), 0 60,15
If 4(AYe U, for some A e <0,1), then

Y CR oM (A= (B4 A (&)-2)), zy (& +r (Z, - w00 ,
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and by Note 2.2
IDg; o (AN & (n-ve)” (eI, -2, 1
hence by Lemma 2.1 h(A) € LLQ for A €<¢0,1)> .

Put fﬁ’za @'Lo,h(d) s #a(1) € A (M) , therefore

G, 0 (1) = (T, 6, (%)),
Uy D, 5, B = (2,24 (2,0 and 9] (F,

Ay (1‘}‘2 ) = X By Lemma 2.1

2 L
~ ~ -1 ~ ~
(2.37) 1%, -4 1 & (n - 2¢) (4+L)!lu.z-u.1 n.
By (2025),
Dz, (@) = [(D,§ )+ (DG ) °Dn (%)]l(D§F), +
etc., Mo = 1,2 and
(2.38) DZé (4.7-a )~ 'Dz,- (a") =
= ‘Dgé}’,‘ [Dn, (%,)-Dn, (#)]e [(pg)+ ngg,)z o
Dy (17" = D2, (&) oD, §), o [ Da; ()~
=D, (%310 (D § ) +(D,§ )0 Da, (3,03 "+ =
and it is not difficult to see that =  may be estima-
ted by
= ﬁw, (ldz- &2‘ n,
<o, being a modulus of continuity. The first term on
the right hand side of (2.38) may be estimated in a si-
milar manner as the right hand side of (2.25). Put

A,‘-Dg?",;(q"r;,O), A+E = (D3, ,
B =D %.5,0, B+ H=(DG)eDs, (&) .

Then
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A NN I & §, NE, I & (w,(p)+K, £+K,co, (eD(1+L)=2¢,
VB NGy IH, 1€ (e, (p)+ K, € +K, e, (EN(1+L)+K, L= 96, .
Therefore, the first term on the right hand side of

(2.38) may be estimated by
~ ~ -1

(2.39) Qo -5 ll)-“A,,-o-E,‘ N-i(B+H I I &
€0 UF-F0- (A I-IB1+1E 1B DI Ga +
+HeB e QNG -Z N (§+a, 74" (1-0e, 7" .
In order to estimate the second term, observe that
1Dz, (&) &L, (D), I §+a, eI+ K e+K @, (E)=§+oe,

~ \a-1 Ay, -1
NTC(D ), +(D,8),0Dn, (#)I N6 IB I-N(id+ H B h £

-1 -4 .1

ST (1-7"2¢,) = (q - 2,) .

Therefore, the second term in (2.38) may be estimated by
~ ~ _1
(2.40) QU - ) -L-(§+2¢)(n-92,)" ;

(2.38) together with (2.39) and (2.40) imply

(2.41) 1Dz (%, )- D2y (&, & @, CIF - % D+2UD-FD)- .,
o = (gm+o +L(§+2,)) (nz-zcz)"

By (2.36), ot < 1. Put B< (7-9¢,) (4+L)" . With-

out loss of generality it may be assumed that @, () =
=2L for some ¥, 0<y < (oz-aez)(4+L)'4R1 . It
follows from (2.41) and (2.37) thet Dz admits fL
as a modulus of continuity provided that 42 fulfils
(2.35) and the existence of such )l is guaranteed by
Lemma 2.14.

The following lemma is standard.
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Lemma 2.16. S (Diff , @, L, N) ie a com-
plete nonempty space.
To finish the proof of Main Theorem, observe that L, ®
and £ have to fulfil (2.5),(2.8),(2.9),(2.15),(2.18),
(2.19),(2.22),(2.31) and (2.36). The special role of L
is due to (2.22), all other inequalities require that L,
so, € are sufficiently small. Therefore, there exists
L,> 0 and to every L, 0 <L & L, there exist
P > (0 &and g€ > 0 such that the above conditions
are fulfilled. Find {. by Lemma 2.15. By Lemmas 2.10,
2.13 and 2.16 there exists n € S(Diff, @, L, N2)
such that g*(pn) = g, i.e. (Lemma 2.9)pa(M)=gon(M);
9 |4‘,(M) is bijective by Lemmas 2.7 and 2.8 and it
is a diffeomorphism by Lemme 2.5 and (2.23). (1.24) holds
by (2.14) and (1.25) follows by Lemme 2.12, (1.18),(1.6)

and (2.5). The proof of Main Theorem is complete.

§ 3. Flows

Main Theorem may be modified so that it may be
applied directly to differential equations, functional
differential equations etc.

Assume that T > (0 and that fort € <0, 2T >
there exists 4’* s E(Rn) — E  fulfilling (1.15)
and (1.16); in addition, let (1.17) -~ (1.20) be fulfil-
led for t € (T, 2T>,. LOt%xE.(R.)—b E be con-
tinuous for t € <0, 2T ).

Definition 1.3. Let ¢ > 0, {%z is said to
be ¢ -close to {4*? y if @, is g-close to f, for
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any t € <0, 2T > .

Assume that

(3.1) if x € E(R,), t,,t, t,,t, €<0,2T), t+t,mt +t

9’1,(“)’ Qr$'(&) € E(Rz) , then
i, 0 9, ) = g 0 9 ()

Theorem 3.1. There exists L > O and to L ,
0<L & L, there exist p > 0,€ >0 and a modulus
of continuity S seuch that if {q;{ is g -close to
{£,3 , then there exists n ¢ S (Diff,p,L, N) eand
qr*[n(M) :pa(M) — p(M) is a diffeomorphism onto

—rL(M) for te (0,2T) . Moreover,

(3.2) ¢, (E(p)) c E(p) for te<T,2T> ,

and

(3.3) if 4,jel, x eE(p')nu:,zeu;’z-%-g,:(x)
for some te<T,2T> 6 M= 0,1,2,... , then

0y (21 - e § &K E1G,60-p, e 000 .

Note 3.1. If there exists a vector field Y on

E  such that % (x) 1is the value at t of the so-
lution n of

(3.4) -‘;—';—:L =Y,

af(O) = x (assume local existence and uniqueness for
solutions of (3.4)), then (3.1) is fulfilled and the

following assertions are consequences of Theorem 3.l.

(3.5) if X € y (M), then there exists a solution 4
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of (3.4) such that 4 (0)=x,y(t) € pn(M) for
teR" ;

(3.6) If a4 is a solution of (3.4) and 4 (t)e E ()
for t € R’ , then 4 (t) e p(M) for te R’

Proof. For A €<T,2T » denote by fz, the
element of S (Diff ,p , L, N ) which exists accor-
ding to Main Theorem, if g is replaced by g, - (3.2)
is fulfilled by (1.24). By (3.2) g, ° g, (x) ,
¥ ° 9 (x) are defined for X € E(p),.%,'té(T,ZT)
and by (3.1) g, °g, (x) =g, ° g, (x) ., ByMain
Theorem g, lf’c (M) is a bijection onto .f, (M) ;

denote by G

» 1ts inverse. Let x e n, (M), 4 =

& cas .
= G': X for some positive integer e . Then 9-: °
° g ly) = 9 ° 9: (44 ) =g,(x) and qa(x)'e 1 (M)
by Corollary 1.1, i.e. % '41,.<M)”’%(M) - N, M) .

By Lemms 2.7 Ga maps 1, (M) onto ap.,y(M) and
by Corollary 1.1 fu, (M) = n, (M), i.e.q, =, .

Write . instead of fr,. If te<T,2T) , then

9114(M) (M) — ,p.(M) is a diffeomorphism onto
£ (M) Dby Main Theorem. Put G = (g, ,»fL(M) )' .
If te <0, T)> , then % M) ™ 9%+1' M) 0 G-T and
% 'h‘M) ‘ie a diffeomorphism onto f1 (M) . (3.2)
follows by (1.25).

It may be useful to have an estimate analogous
to the one from (3.3) for ¢ e <0,T> ; ina similar
manner as in § 2 it may be proved that
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(3.7 g, (E(p) c E(K,p+ €) forte(0,T),

(3.8) if te<0,TY, 4,4 €I, xe ulnE(p),z-%(x)e U

’
then )
1@z )- o oF; x M & K, (K, 4+ €)1+ LG, (x)- 1, F, N
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