[1] L. BUKOVSKÝ:
The consistency of some theorems concerning Lebesgue measure. Comment. Math. Univ. Carol. 6, 2 (1965), 179-180.
MR 0184850
[2] L. BUKOVSKÝ: $\nabla $ -models and distributivity in Boolean algebras. Abstracts of papers 3rd ICLMPS, Amsterdam 1967, p. 27.
[3] K. GÖDEL:
The consistency of the continuum hypothesis. Annals of Math. Studies, No. 3, Princeton 1940.
MR 0002514
[4] K. HRBÁČEK:
Measurable cardinals in some Gödelian set theory. Comment. Math. Univ. Carol. 7, 3 (1966), 343-358.
MR 0209146
[5] K. KURATOWSKI: Topologie I. Warsaw 1958.
[6] R. S. PIERCE:
Distributivity in Boolean algebras. Pacific. J. Math. 7 (1997), 983-992.
MR 0089180
[7] R. S. PIERCE:
A note on complete Boolean algebras. Proc. Am. Math. Soc. 9 (1958), 892-896.
MR 0102487
[8] D. SCOTT:
The independence of certain distributive laws in Boolean algebras. Trans. Am. Math. Soc. 34 (1957), 258-261.
MR 0086048 |
Zbl 0092.03401
[9] R. SIKORSKI:
Remarks on some topological spaces of high power. Fund. Math. 37 (1950), 125-136.
MR 0040643 |
Zbl 0041.09705
[11] P. VOPĚNKA: Properties of $\nabla $ -model. Bull. Acad. Polon. Sci., Sér. Mat., Astr. et Phys. XIII (1965), 189-192.
[12] P. VOPĚNKA:
General theory of $\nabla $ -models. Comment. Math. Univ. Carol. 8, 1 (1967), 145-170.
MR 0214460