Article
Keywords:
existence; masonry dam; hydrostatic pressure; penalty method; convergence; shape optimization; weight minimization; finite elements
Summary:
Shape optimization of a two-dimensional elastic body is considered, provided the material is weakly supporting tension. The problem generalizes that of a masonry dam subjected to its own weight and to the hydrostatic presure. Existence of an optimal shape is proved. Using a penalty method and finite element technique, approximate solutions are proposed and their convergence is analyzed.
Related articles:
References:
[2] S. Bennati A. M. Genai C. Padovani: Trapezoidal gravity dams in pure compression. CNUCE - C.N.R., Internal Rep. C88-22, May 1988.
[3] S. Bennati M. Lucchesi: The minimal section of a triangular masonry dam. Мессаniса J. Ital. Assoc. Theoret. Appl. Mech. 23 (1988), 221-225.
[5] M. Giaquinta G. Giusti:
Researches on the equilibrium of masonry structures. Arch. Rational Mech. Anal. 88 (1985), 359-392.
DOI 10.1007/BF00250872 |
MR 0781597
[6] I. Hlaváček:
Optimization of the shape of axisymmetric shells. Apl. Mat. 28 (1983), 269-294.
MR 0710176
[7] I. Hlaváček:
Inequalities of Korn's type, uniform with respect to a class of domains. Apl. Mat. 34 (1989), 105-112.
MR 0990298 |
Zbl 0673.49003
[8] I. Hlaváček R. Mäkinen:
On the numerical solution of axisymmetric domain optimization problems. Appl. Math. 36 (1991), 284-304.
MR 1113952
[9] J. Nečas I. Hlaváček:
Mathematical Theory of Elastic and Elasto-Plastic Bodies. An Introduction. Elsevier, Amsterdam, 1981.
MR 0600655
[10] O. Pironneau:
Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York, 1983.
MR 0725856