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Summary. Shape optimization of a two-dimensional elastic body is considered, provided
the material is weakly supporting tension. The problem generalizes that of a masonry dam
subjected to its own weight and to the hydrostatic pressure. Existence of an optimal shape
is proved. Using a penalty method and finite element technique, approximate solutions are
proposed and their convergence is analyzed.
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INTRODUCTION

A new attention has been drawn recently to elastic materials which are not sup-
porting tension, such as masonry-like materials (see e.g. [5, 1]). In connection with
the optimal design of a masonry dam, minimization of a cross-section of triangular
shape was solved in the paper [3], whereas trapezoidal shapes were considered in [2].
In the latter papers, the masonry dam is subjected to its own weight and to hydro-
static pressure in a state of plane strain. Approximate solutions of the elastostatic
boundary value problems by means of the Airy stress function were used in the stress
analysis.

The aim of the present paper is to propose another approximate solution of the
weight minimization problem, taking more general than trapezoidal shapes of the
cross-section into consideration. To solve the elastostatic problems, a primal or dual
finite element method is used with piecewise constant stress fields. Then a penalty
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approach enables us to remove the constraint that only small tensions are allowed
and thus to simplify the resulting nonlinear programming problem.

In Sections 2 and 3, proofs of the existence of at least one solution to both the
continuous (original) and the discretized (approximate) optimal design problems are
given in detail. In Section 4, we apply a dual approach to the state problem. More-
over, a comparison of our model with that of Giaquinta and Giusti [5] is presented.
Section 5 contains definitions of adjoint problems, which are useful in the sensitivity
analysis, i.e., for calculations of the gradient of the penalized cost functional with
respect to the design variable. In the last section, a convergence analysis is presented.

1. ASSUMPTIONS AND DEFINITIONS
Throughout the paper we shall consider a class of two-dimensional domains (cross-

sections of elastic bodies){€2(v)}, where the design variable v belongs to the following
set

Ung = {v € C([0,1]) | a < v(z2) < B,

dv d%v
—1 < i 1], |[—1| < el 1]}.
i S Cy in [0, 1], az3| Cy a.e. in [0, ]}

Here C(1):! denotes the space of continuously differentiable functions with Lipschitz
derivatives, a, 3, C1, C; are given positive constants, a < 3.
Let the domain Q(v) be defined as follows

Q) ={z =(z1,22) | 0 < z1 < v(x3),0 < z3 < 1}

and let I'(v) denote the graph of the function v. Let the elastic body be in the state
of plane strain. Assume that the following basic relations hold:

1 (Ou;  Ouj . oo
eij(u) = 5 (a—:—J— + G_ZJ.—) , 4,j=1,2, (strain-displacement)
Oij = Cijmi€ml, (stress-strain)

(any repeated index implies summation over the range 1,2), where the coefficients
cijmi are bounded and measurable in a rectangle

Qs =(0,8) x (0,1), &> p.

Moreover, we assume that

Cijml = Cjiml = Cmlij
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Q(v)
O T
Tu(v)
Fig. 1.

and a positive constant co exists, such that
(1) cijmi(x)eijemi > coeijeij

holds for almost all z € Q5 and for all e € Rgym. Here Rsym denotes the space of
symmetric real 2 x 2 matrices.

Let the body be subjected to given body forces F' € [L?(£25)]? and surface tractions
g € [L%(T0)]?, where Iy is a segment of the zj-axis. (For example of a dam—see
Fig. 1). Finally, let us consider the following boundary conditions

u=0 on Tyuw)={z|0<=z <v(0), z2 =0}
(the body is fixed on T'y(v)) and

T=g on Ty,
T=0 on 089Qv)—Tyu(v)—"To,
where T; = o;;v; denote components of the vector of surface tractions, v; are com-

ponents of the unit outer normal to dQ(v).
We introduce the space of virtual displacements

V(v) = {w € [H'(Q)]? | w = 0 on Ty(v)},

(H'() being the standard Sobolev space W12(2)), the virtual work of external
forces

F(v;w) = / Fgw;dz+/ggw;dr
Q(v) To
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and the “internal virtual work”
a(v;w,y) = / cijmieij(w)emi(y)dz, w,y € V(v).
Q(v)

Let us introduce the space of tensor fields defined on a domain Q:

S(Q) ={o: Q = Reym | 0i; € L*(Q), i,j=1,2}
with the inner product
(0,7)q = /a;jr,-j dz

Q
and the associated norm

1
llollon =<0,0>% .

We shall use also the standard norm in [H¥(Q2)]%,k =0,1,...,

2
i = (X lwilly) (@) = L2(@).
i=1

A (weak) solution of the elastostatic problem is defined as an element u(v) € V(v)
such that

(2) a(v;u(v),w) = F(v;w) Ywe€ V(v).

Lemma 1.1. There exists a unique solution u(v) of the problem (2) for any
u€ %a%, where

0, = {v e C®Y([0,1) (i.e. Lipschitz functions) | a« < v < B,
dv

i, < Cy ae. in [0,1]}.

Moreover, a constant Cs exists, independent of v, and such that

®) llu(@)ll1,aw) < Cs Vv € %

Proof. There exists a positive constant C, indepenedent of v € %2, such that
(4) lle(w)llo,a() 2 Cllwll,ap) Yw € V(v).

(For the proof see [7], Section 2.2 (i)). Using the property (1) of the coefficients
Cijml, We obtain

(5) a(viw,y) > eoClwl auy Y € V(v).
204



In addition to that, we easily derive that

(6) la(v; w, y)| < Csllw||1 aw)llvlli,ae)

(7 |# (v; )| < Callwllow) Yw,y€V(v)

holds with constants Cs, Cy4 independent of v € %2.
In proving (7), we write

| (v; w)| < [|Fllo,6llwllo,a) + llgllo,rs llwllo,ro
and use the estimate
llwjllo,ro < Collwjlli, @ < Collwjlli ey, =12,

where %, denotes the rectangle (0, a) x (0, 1) and the constant Cj is indpendent of v.

The unique solvability of the problem (2) now follows from the Riesz Theorem, on
the basis of (5),(6) and (7).
Inserting u(v) for the test function in (2) and using (5), (7), we obtain

coC?|lu()|I} oy < & (v;u(v)) < Callu(@)ll1,a0)-
Consequently, the estimate (3) follows with Cs = C4/(coC?). a

A masonry-like elastic material is weakly supporting tension, i.e., for a “small”
parameter k > 0 we have

(®) oijtit; <k VLER?, |t =1,

where ||.|| stands for the Euclidean norm. This requirement leads by the next Lemma
1.2 to the definition of a new set of admissible stress fields

9) M) ={oc€S(Q) |11 <k, o920 <k, det(c —3) >0 a.e. in Q},

where k € L%(), k > 0 and

(10) = [’52]

Lemma 1.2. An equivalent definition of M(Q) is
(11) M(Q) = {0 € S(Q) | oijtit; <k VteR? ||t|| =1).
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Proof. Let o € Rsym and k € R! be arbitrary. As ¢ is symmetric, its charac-
teristic polynomial

(12) q(k) = (011 — k)(022 — k) — 03, = det(o — 5)
has two real roots A;1(0), A2(0). Assuming that A;(0) < A2(0), we may write

(13) (o) € 21_1_%7_2_2 < (o) = "fﬂla_-’g oijtit;,

since ¢ attains its minimum just at the point %(011 + 022).
To prove the lemma it clearly suffices to show that

(14) Ma(o) <k
is equivalent to
(15) 011 S k, 022 S k, q(k) ? 0

So let (14) be valid. Then obviously g(k) > 0 as ¢ is a convex parabola and Xz(0)
its greatest root. From (13) and (14) we have

(16) 011 + 022 < 2X3(0) < 2k.

Suppose for a moment that o1; > k. Then by (16), 022 < k and from (12) we find
that g(k) < 0, which is a contradiction. Hence, 011 < k and similarly we derive that

022 < k.
Conversely, let (15) be valid. Then from (13) we get
(17) M (o) € max{oy1,092} < k.
But k cannot lie in the interval (A, (¢), A2(¢)) due to the condition g(k) > 0. Hence
(14) holds. O

Lemma 1.3. The set M(R) is convex and closed in S() for any domain 2 C R%.

Proof. 1° Let ¢ €0,1] and 7,0 € M(R) be arbitrary. Then for any ¢t € R?,
[t = 1, ve may write

(ET +(1- f)t‘r)ijt,'tj = {njtit; + 1- f)d,‘jt,'tj <k ae inQ,

making use of Lemma 1.2. Consequently, the set M(Q) is convex.
2°. Let 7™ — 7 in S(Q), ™ € M (). Using the Lebesgue Theorem, we obtain a
subsequence of {7"} , still denoted by {r"}, such that

7ij(z) o nj(z) foraa. z€Q, ij=12
Therefore, for any unit vector ¢t € R? and a.a. z € Q we have
nll’ngo T"}(r)t.’tj = T,‘j(.’c)t,'tj <k,
using again Lemma 1.2 for 7 € M (). Thus 7 € M(Q) and M () is closed. O
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Henceforth we assume that a function k € L%(Q;) is given, k > 0. Let o(v) €
S(Q(v)) be defined by means of the stress-strain relation and strain-displacement
relation:

(18) 0ij(v) = cijmiemi (u(v)), 4,5 =1,2,

where u(v) is the solution of (2). We introduce the set of statically admissible design
variables

$aa = {v € %a | o(v) € M(Qv)) }

and the Optimal Design Problem

(19) vo = argmin j(v),
V€L

where
0= [ pe)ee
a(v)

represents the weight of the body, p is the specific weight, p € L?(2), p > 0. Note
that the body forces are—in case of the dam— F; = 0, F, = —p and p is constant
or piecewise constant.

2. EXISTENCE OF AN OPTIMAL DOMAIN

In order to prove that the Optimal Design Problem (19) has at least one solution,
we shall need the following assertion.

Proposition 2.1. Let {v,}$, be a sequence of functions v, € %Y such that
,,l_if& vw=v in C([0,1]).
" Then
(20) (va) = a(v) in  S(Qs),

where &(v,) and &(v) denote the extension of o(v,) and o(v) by zero to the set
Qs — Q(vn) and Qs — Q(v), respectively.

In the proof the basic role is played by the following result.
Lemma 2.1. Let the assumptions of Proposition 2.1 be fulfilled. Then
u(vm)lGn — u(v)lg, (weakly) in [H'(Gm)]?
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holds for n — oo and any integer m > 1/a, where

1
Gm:{z|0<z,<v(x2)—;n—, 0<x2<1}.

Proof. Let usset u, = u(vp), Qn = Q(vn), @ = Q(v), u = u(v). We introduce
an extension of u,, as follows

ﬁ”i(z) = “"j(m‘)! =12,
where

z* = (2va(z2) —z1,22) for z€Q) —Qn,

Q% = {(21,22) |0 < 21 < va(22) + @, 0 < 23 < 1} = Qs + ).
Since for a.a. points z € Q7 — Q, we have
(Vitns (2)[? < (24 4(5)) [Vuns ()P, 5= 1,2,
it is easy to derive the upper bound
ll2n;l1 0z < (14 C)llunjlli o,
with C independent of n. Lemma 1.1 yields that
(21) llunll. < Cs,

so that
llinl1} @n < (1+ C)CE.

Since
QD =2v+3a) Vn>ng(a),

it is readily seen that
(22) llinll1,00 < Cs(1+C)Y? ¥n > no(a).

There exists 4 € [H(£2)])? and a subsequence {uy,} of {u,}(which we denote for
simplicity only by {u,}) such that

(23) ‘ 4 — @ (weakly)in [H'(Qa)]%
Since @, € V(v+ 1a) and V(v + ) is weakly closed, we conclude that @ € V(Qq).
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Let a test function w € V(v) be given. The symmetric extension w (with respect
to I'(v)) belongs to V(v,) for all r sufficiently large and we may write

(24) a(vr; ur, W) = F(vr; ),

(we assume that r is such that Q(v,) C §24). Let us pass to the limit with r — oo.
Then we have

la(vr; up, @) — a(v; 8, w)| < |a(vr; ur, W) — a(v; @y, ®)| + |a(v; Gy — @, w)| = Ky + Ko,

K, < / lesjmiess (i et ()] dz < Cllie |12, 6111, a(0,.0) — O

A(D,,0)

where

(25) A(R,2)= (2 —Q)U (2 - Q,),
lim measA(Q2,,Q) =0,
r—00

and the bound (22) have been used. Since also K; — 0 by virtue of (23), we arrive

at

(26) ,I.LTO a(vr; ur, W) = a(v; o, w).
It is easy to derive that

(27) rllglo F(vr; ) = F(v;w).

In fact, using (25), we obtain that
| Z(vr; W) — F(v;w)| = ‘/Fiu”),- dz — /Fgw; dz:l < / | Fiw; dz| — 0.
Q, Q A, ,2)
Combining (24), (26) and (27), we are led to the equation
a(v; 4, w) = F(v; w).

By Lemma 1.1 the problem (2) is uniquely solvable in (v), so that ﬁln = u(v)
follows, since also ﬁln € V(v).
It is readily seen that (23) yields

. 1
ﬂrle = uflc,,. — u(v)le (weakly) in  V (v - 7n—> Vm > fa.

From the uniqueness of the solution u(v) we conclude that the whole original sequence

{un|g }3%, converges to u(v)| g, - a
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Proof of Proposition 2.1. Let us put o, = o(v,), 0 = o(v). It is readily seen
that
(28) — a'l

(weakly) in  S(Gp) VYm > 1/a

""IG,,. Gm

is a consequence of Lemma 2.1 and the relation (18).
Let us consider any ¢ € S(€2). Then we may write

l(‘p’an)ﬂd - (‘Pv &)05 | g
< l( on)g,, — (¢, 0, +{P.on)a, ¢, — (¥ %)a_c.. l
gl(‘/’fdﬂ)c,,, (‘P’ G...l+| gp,a,, Q- G’,..|+| ﬂ Gm‘

IH

Ki+K;+ K3 —0
for n — co. In fact, from (28) we conclude that
K, —0.
Moreover,
Ks < |lelloan-Gnllonllon, =0 if n—ooo, m—oo, n>ni(m),

since
“U"HO,Qn <C Vn=12...

follows from Lemma 1.1 (see(21)) and
1
meas(, — Gm) < e + |lvn — v|joc — 0.

By definition of G,y,,
K3 —0 for m— oo.

Combining the three limits, we obtain that

(29) op, — G (weakly) in  S(Qj).

Next substituting for the strain from the inverse strain-stress relation
e(un) = boy,

we obtain 1

(30) (Gn,bGn)q, = a(vn; tn,un) = F(vn; un).
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Let us show that
(31) nlirn F(vn;un) = F(v;u).

In fact, we have

i/F‘undz——/F-uda:'gl/F—(u,.—u)d:c‘
Qp Q Gm
+' / F - updz +i / F-ud:c‘E

QnsGm Q-G m
=Ji+J2+ Js,

Ji—=0 for n— oo,
by virtue of Lemma 2.1,
T2 < 1Fllo,0n~6 mllunllo,0, — 0
using (3) and
meas(Q, — G) = 0 for n—o0, m—o00, n>ni(m).

Finally,
Jz3—0 for m — oo.

/g-undI‘——»/g~udF
To

To

The convergence

follows from Lemma 2.1. Combining these results, we arrive at (31). Since
(32) F(v;u) = a(v; u, u) = (6(v), b&(v))m ,
from (30), (31) and (32) we obtain that
(33) (Gn,b0n)q, — (5(v), b5(v))q, -
The norm ||7|o,qs is equivalent to the energy norm
Il = {r,br)gl,”

Then
lon — G(v)llo,as < CllGn = 3(v)llas; — 0

follows from the convergence of the norms (33) and the weak convergence (29).

o
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Lemma 2.2. The set &4 is compact in C'([0, 1]).

Proof. The set %q4 is compact in C([0, 1])—see [6],Lemma 2. Let &g # 0
and consider a sequence {vn} C &aq. Then there exists a subsequence of {v,}, still
denoted by {vn}, such that
(34) vpo—v in CY[0,1]), v € Zua.

It is sufficient to verify that o(v) € M (Q(v)). Since

(35) (v,) € M(Q5) Vn

and the set M(Q5) is closed by Lemma 1.3, Proposition 2.1 implies that

(36) nlingo G(v) = 6(v) € M(Qs).
Consequently, o(v) € M (Q(v)). O

Remark 2.1. Note that the strong convergence of stress fields is superfluous
here, as M(£2s) is weakly closed (see Lemma 1.3) and the weak convergence (29) is
sufficient to prove Lemma 2.2.

Later on, however, we shall need the strong convergence to show the continuity of
penalty functionals in Section 6.

Remark 2.2. We can see that M(Q) is a convex cone with its vertex at the
point » € S(Q), M = kéij.
Theorem 2.1. Let the set &4 be non-empty. Then there exists at least one

solution of the Optimal Design Problem (19).

Proof. By Lemma 2.2, the set &g is compact in C([0, 1]). Since the functional
j : CY([0,1]) — R! is continuous, it attains at least one minimum in the set &q. O

Remark 2.3. In case of a masonry dam and k = 0, we can satisfy the assump-
tion 6ad # 0, employing some results from [2].
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3. APPROXIMATE SOLUTION

We shall propose an approximate solution of the Optimal Design Problem (19),
which is based on piecewise linear approximations of the unknown boundary, finite
element method for solving the elastostatic problem and penalty approach to satisfy
the constraints on the stress field.

Let N be a positive integer, h = 1/N and Aj; = [(j — 1)h,jh],j=1,...,N. We
define

Uiy = {vn € C((0,1)) | vn],, € Pr(4;), §=1,...,N, a < vn < B,

d”Uh

dz,| S O 1BRoa(G)I < Coy j=1,..,N —1},

where Pj(A;) is the space of linear polynomials defined on A;,
(37) Shvon(ih) = h=2[oa ((j + 1)h) = 20a(jh) + va ((G = 1)R)].

Let Qn = Q(vn). The polygonal domain Q4 will be divided into triangles as
follows. Choose an initial function v} € Pi([0,1]) N %} and construct a regular
system of uniform triangulations Z;(v)). (For instance, in case of the dam we set—
in accordance with the results of [2]—

v)(z2) = a — zo/Vh, b= |F3|/|dg1/dz,|, a = const.)

For a general vj, € ?/a’(‘i we construct F(vn) as a “distortion” of the initial triangu-
lation (v)), preserving the number of nodes on any straight line segment

(38) {z | z1 € [0,vn(jh)],z2 = jh}, 3 =0,...,N,

and the uniform partition of these segments.
We shall employ the standard finite element space with linear polynomials on any
triangle K € Z,(vp):

Va(vn) = {U)h € [C(Qh)]z | wth € [P](K)]z VK € Zi(vn), wyp =0 on Fu(vh)}.

The finite element solution of the elastostatic problem (2) will be defined as a function
up(vn) € Vi(vn) such that

(39) a(vh;uh(vh),wh) = ﬁ(vh;wh) Ywy € Vh(vh).

Since Vi (vy) C V(vp) and vi € ”?/a%, we easily prove that the problem (39) has a
unique solution for any vy € %}, making use of (5), (6) and (7). Moreover, we
obtain that

(40) llun(vn)ll1ae.) € Cs Vun € 2,
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where Cs is a constant independent of vj,.
Let us define an approximate stress field o”(v;) by means of the formulae
ol5(vn) = cijmiemi (un(vn)), 4, =1,2.

Remark 3.1. The stress field o"(vy) is piecewise constant, i.e. crf‘j(v;,) € Py(K)
for all K € J(vs), provided the coefficients ¢;jm; are piecewise constant.

Next let us introduce the following functions

fi(v,0) = / (0is —k)*dz, i=1,2, (nosum)
Qv)

fa(v,0) = / (det(o — »)) " dz, - (565 = kéij)
Qv)

where (.)* and (.)~ denotes the positive and negative part, respectively.
A Penalized Cost Functional will be defined as follows

3
. . 1
(41) Je(0,0) =50 + 2 3 _fi0), £ >0,
=1
Finally, we introduce the Approzimate Optimal Design Problem
(42) vj, = argmin je (va, 0" (vp)).
e

Theorem 3.1. The approximate problem (42) has at least one solution v for
any fixed h = 1/N and any real positive parameter €.

The proof is based on the two following lemmas.

Lemmma 3.1. Let h = 1/N be fixed and let v} € %},
lim vy =v, in C([0,1]).

n—00

Then
(43) lim 6" (v}) = &"(vy) in  S(Qy),

where &" denote extensions of o by zero.

Proof. For brevity, we set v = v}, v = vn, Qn = Q(v}), @ = Q(vn). Let
{wP}, r = 1, ..., d, be basis functions of the subspace V4(v"). (Note that d is
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independent of n due to the construction of J(vn).) The solution us(v™) can be

expressed as follows
d
(o) = 3 U7l
r=1
and the vector of coefficients U™ satisfies the linear system
K@")U™ = b(v"),
where the entries -

Kij(v") = a(v™; wl w}),  bi(v") = F(";w))

depend continuously on v". (Cf. e.g. [10] for the details of the proof.) Passing to the

limit with n — oo, we obtain

d
up(v) = Z Urwr,
r=1

where
U= K '(v)b(v) = lim U in R¢

and {w,} are basis functions of the subspace Vj(v).

Let @ and @, be extensions of w]' and w, by zero into the domains Qs — Q,, and

Qs — Q, respectively. Since we may write

d d
~h _ ~ — ~
775 (vn) = Cijmiemi (Z U,"w;’) = Z U cijmiemi(dy)

r=1

r=1

and since for the extensions
lm emi(@]) = emi(@r) in S(p)
n—00
holds (cf. [10]), we obtain the assertion (43).
Lemma 3.2. Let the assumptions of Lemma 3.1. be fulfilled. Then

lim f;(vf,0"(v)) = fi(vn,0"(vn)), i=1,2,3.

Proof. First consider i = 1,2. We may write

150, 0*0m) = 50, @) = | [ 15" =) — (34 ) - £)*ae] <
Qs

< / |7k (v") = #h(v)|de < CJ}7* (™) = 7 () o, — O
Qs
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by virtue of Lemma 3.1 and the inequality
lat —b%| < |a—b].
Let us consider the case ¢ = 3. Then we have
s (57,7 07) = fo 0,7 0)| = | [ (et (30) = )™ (det(" () = )
Qs

s/|det(&h(v")—x) —det(&"(v)—%)|d:c—>0
Qs

using again Lemmma 3.1 and the inequality

la= =07 | < ja=b|.

Proof of Theorem 3.1. Making use of Lemma 3.2, we derive
(44) ,.li.r& je (v*, 0"(v")) = je(v,0"(v)) for " —v in  C([0, 1]).
Let us introduce a vector a € R¥*! with components

a; =v4(th), i=0,...,N,

and let
o = {a e RV | Ju, € %l : a; = wn(ih), i=0,...,N}.

By virtue of (44), the function

(45) ar Je (vh(a)v at (vh(a)))

is continuous in the set & which is clearly compact. Consequently, the minimum is
attained in &. O

216



4. APPLICATION OF A DUAL APPROACH

The primal variational formulation (2) and the corresponding approximate solu-
tion defined by the system (39) is not the only possible way how to calculate the stress
fields. Next we shall show another way, based on a well-known dual variational formu-
lation, i.e., the principle of minimum complementary energy (Castigliano-Menabrea).

Let us define the inner product and the associated norm

B 1
(0’, T)n = / b,‘jmldij‘l'mldx, “0’”9 = (0’, 0’)6,

Q
where b;jmi are coeflicients of the inverse strain-stress relation
eij = bijmiomi, 1,7 =1,2.
Let us introduce the set of equilibrium stress fields
E(v) = {0 € S(2v)) | (o, e(w))q) = F(v;w) Yw e V(v)}.

The actual stress field o(v) coincides with the minimizer of the complementary energy

1
F(v1)=3 71l
over the set E(v), i.e.

(46) o(v) = argmin & (v; 7).
T€E(v)

The problem (46) has a unique solution for any v € % (see e.g. [9)-Chapter 7).
Let us apply the finite element method to the approximate solution of the problem
(46). We introduce the following subsets

Hp(vn) = {" € S(Qvn)) | 73| € Po(K) VK € Fi(wn), i,5=1,2},

Ex(vn) = {* e Hpy(vn) | <Th’e(wh)>ﬂ(u;.) = F(va;wn) Ywi € Vi(vn)}.

Note that En(va) is an ezternal approximation of the set E(vy), since Ex(vy) ¢
E(vh).
The Castigliano principle (46) leads us to the following finite-dimensional problem:
Find " € Ex(vs) such that
(47) (o*, ™)a, =0 Vr* € Ep(vn),
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where Q5 = Q(vh) and
Ep(va) = {r" € Hu(vn) | (7", e(wn))q, =0 Vuwn € Va(w)}.

Lemma 4.1. The problem (47) has a unique solution o*(v,) for any vy € UM
and any h = -1{—,

Proof. The set E(v) is not empty, since o(vs), defined by the formula (8),
belongs to E(vp) (cf. (2) and Lemma 1.1).
Let us define the projection mapping

rh: S(Q) — Hp(vn)
by means of the following relation
(r - ThT,wh>nh =0 Vw® € Hu(vn).

Then rno(vy) € En(ve). In fact, for any wy, € Vi(va) we have e(wp) € Hp(vn) and
wp € V(vp), so that

(rno(vn), e(wn))q, = (o(va), e(wr))q, = F(va;wh).

Consequently, Ej(vp) is also non-empty. The problem (47) is equivalent with the
following one

1

(48) ot = argmin 3 ||rh||?lb.

ThEEL(va)

Since the set Ej(vp) is convex and closed in S(€2), the unique solvability of the
problem (47) follows. a

Let us consider the modified Approximate Optimal Design Problem (42), where
o"(vn), however, is determined by the solution of the problem (47). Then Theorem
3.1 remains true, as well as Lemmas 3.1 and 3.2. In the proof, we have only to
replace the proof of Lemma 3.1 by a new argument as follows.

Proof of Lemma 3.1. 1° Recall the abbreviated notations v = v}, v
Q, = Q(v}). From (48) we obtain

Vh,

(49) (o), ™" — " (v")) g 20 Vr* € Ba(v").

Substituting
™= rho(v") € Ex(v")
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(cf. the proof of Lemma 4.1), we may write
(50) o™ (@"la, < ("(wn), Ro(@™) g, < llo® @)l o (™)l

Properties of the coefficients b;jmi are quite analogous to that of c;jjmi, so that a
positive constant by exists such that

(51) b5 lIlloae) < litllaw) < bolltlloae) Vv € %y VT € S(Q(v)).
Consequently, we obtain
Irke(v™)la. < bollrko(v™)llo,a. < bollo(v™)llo,0, < boC

using also (3) from Lemma 1.1, the formula (18) and the boundedness of ¢;jmi. Then
(50) implies the estimate

(52) 13" (@™)llo.s = llo" (™)llo,0a < bollo™(v")lla, <B3C Vn.

Therefore, o € S(£25) and a subsequence (which will be denoted by the same symbol)
exist such that

(53) &"(v") — o (weakly) in S(£2s).
2° We show that
(54) oc=0 a.e inQs—Qv).

Let ||o|lo,p > 0 for some measurable set D C Q5 — Q(v). Introducing the character-
istic function xp of the set D, we obtain for n — oo

<5h(vn),XDU)n6 — (0,xp)q, = lloll3,p > 0.

On the other hand,
(" (v"), xD0)g, | = 1{6"(+"),0) pnq. | < 115" (v")llo,asllllo,pna, — 0
by virtue of (52) and the fact that
meas(D N Q,) — 0.
Thus we arrive at a contradiction and (54) holds.

219



3° Let us show that
(55) |y € En(v).

We can write
(56) (™) =) (o) (),
i=1

where 9()(v") are basis functions of the space Hj(v"), s = dim H,(v") being inde-
pendent of n, 5(v*) € R®.
One can prove that positive constants ng and Cj exist such that

(57) llvllo,a. = Coll<|lw-

holds for all n > no and w € Hx(v").
From (52) and (57) we conclude that a subsequence of {¢(vs)} exists such that

(58) o(v") — ¢ in R,

where & is the vector of coefficients of & in Q(v). In addition to that, the convergence
in (53) is even strong, since

(59) |ZO@™) = FOW)og, =0 forn—o0, i=1,...,s.
It is easy to realize that
o € Ex(v) & A(v)é = F(v),

where the matrix A(v) has the following entries

(99, e(w,)>ﬂ(u)

and w, are basis functions of the space Vj,(v). The entries of #(v) are obvious. Since
ot (v") € Ex(v") = A(v")e(v") = F(v")

and A(v"), #(v") depend on v" continuously, passing to the limit with n — oo and
using also (58), we arrive at

A(v)e = F(v).
Consequently, (55) holds.
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4° Let us consider an arbitrary test function 7 € E9(v). Then we may write
s .
T= Zﬁﬂ(')(v), A(v)7 = 0.
i=1
It is not difficult to realize that the d x s matrix A(v) has a full rang d = dim V4 (v).

(Note that
dimViy(v) =d< = dlm Hp(v) =

I\Dltn
~—

Thus a suitable renumbering leads to the equatlon
A1 (v)7F + Az (v)7? =0,
where A;(v) is a nonsingular d x d matrix, so that

# = #1(#2) = AT (v) Az (v)72.

Obviously, defining
Ta(7?) = A7 (V") A2 (V") 7,

we obtain that

(60) T(0") = ) ()0 (07) + Y #E0:(0") € ER(v").

id i>d
Introducing extensions of 7(v™) and of 7 as follows

7(v") = 01in Qs — Q,, and 7 = 0 in Q5 — Q(v),

we obtain from (60) that

(61) (), 70")g, = 0.
We show that
(62) F(u") — 7 in S(Q).
In fact, we have
,
7™ = 7R, < l[ggm nWOJ]M+2/[Z;.0 ) 50| da
= Jin+ Jon.
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It is easy to find that
lim Jon =0

n—oo

on the basis of (59). Denoting by || |l« the standard spectral norm and using (60),
we may write

- 2
i =2 [ [ 6 - #EN3E) do < Ol - e
g, nikd
7)) e < [l = AT 0 Ao(6™) + AT ) As()le [Plgems — 0,

since the matrices depend continuously on the variable v". Consequently, we arrive
at (62). Passing to the limit with n — oo in (61) and making use of (53) and (62),
we get

(Ua T)Q(u) =0.

As the solution of the problem (46) is unique (cf. Lemma 4.1) o = o"*(v,) follows
and the whole sequence {5"(v})} tends to 6" (vs) in S(s). O

A COMPARISON WITH THE MODEL OF GIAQUINTA AND GIUSTI

In the paper [5], Giaquinta and Giusti introduced a new mathematical model of
masonry-like materials, which resembles that of so called perfect plasticity subject
to Hencky’s law. In the stress formulation the state problem is reduced to the
minimization of the complementary energy #(v; 7) over the set

2 (v) = M(Q(v)) N E(v)

(cf. [5]-Theorem 7.2). It is readily seen that ¢ (v) is closed and convex. Conse-
quently, the unique minimizer o€ (v) exists if and only if J¢ (v) # 0.

Assume that v € &q4. Then o(v) € #(v) and 0% (v) = o(v) follows from (46).
Thus we obtain that

Eng C Poq = {v € Upy 1.1/(1)) # @}
The optimal design problem could be now reformulated as follows:

(P) v§ = argmin j(v).
VEPad

Since
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S5, 90 < ol 50,
we conclude that our setting (19) is “on the safe side”.

The same conclusion follows from the fact that in our setting the compatibility of
the stress field o(v) is guaranteed almost everywhere, whereas the stress 0€(v) can
be incompatible in some subdomains of Q(v) (cf. [5]-Introduction).

On the other hand, a mathematical analysis of the problem (P) would be much
more difficult. It remains open, to the authors’ knowledge, until now.

5. GRADIENT OF THE COST FUNCTIONAL—ADJOINT PROBLEM

For an effective solution of the Approximate Optimal Design Problem (42) the
gradient of the penalized cost functional with respect to the design variable is needed.
To this end, the well-known method of an adjoint problem may be employed (cf.

e.g. [8]).
5.1. PRIMAL APPROACH

Let us recall the proof of Theorem 3.1, where a € R¥+! denoted the vector of
nodal z-coordinates of the design function v;. We may write

d
(63) o () = 3 Ur(@)o(a),
r=1
where
(64) 0(a) = cijmiem (wr(a)), i,5=1,2,
and wy(a), ..., wa(a) denote basis functions of V,(vs).

The vector of coefficients U(a) € R satisfies the following linear system
(65) K(a)U(a) = b(a).
Substituting (63) into the formula for j. leads to the following definition

d
F(a) = J(a,U(a)) = je (vn, 0" (vn)) = je (vn(a), Y_Ur(a)o(a)).

r=1
Lemma 5.1. Let ¢ € R? be the solution of the so-called Adjoint Problem

(66) K(a)g = VyJ(a,U).
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Then
61) Ve (a) = Vol (@ V)]y_pie) + (Vabla) = (VaK @)U (@) g

Proof. Obviously, we may write

(68) Va £ (a) = Val(a,U) + (VaU(a)) Vi J(a,U).
On the other hand, differentiating (65) we obtain
(69) (VaK(a))U(a) + K(a)VsU(a) = V,b(a).
Using further the symmetry of K(a),(66) and (69), we arrive at
(70) (VaU(a)) Vo J(a,U) = (VoU(a))" K (a)q
= (Vabla) - (VaK(@)U(@))
To obtain (67), it suffices to substitute (70) into (68). O

A direct calculation leads now to the following lemma.

Lemma 5.2. Components of VyJ(a,U) are
2

e -2y [ #eh@- R @
Ur ¢ i:ln(a)

) - [ Hdetle @) = ) o @) la) ~ #) + (o 0) - o @)
Q(a)
- 20’1‘2(a)6§'2)(a)] dz, r=1,...,d,
where H(.) is the Heaviside function, " (a) = o"(v) and o(r)(a) are defined by (63)
and (64).

Components of V,J(a,U) are given as follows

aJéZ;U) = /‘Pj(zz)p(Vh(xz)’zz) dl’z

d

i[/ (ok(a) - )ZU,%:F—a)dx

i=1 r=1
1

@+ [ e (@ =R, ) a5 [y et @ = )

) dz—

+

mi.—-

d " o) 907
> U ((eht@) - D 2 + (ot - B g

1 X -
- /0 <pj(z2)(det(0' (a) — ») |r1=v;.(xz)) dl‘z], j=0,...,N,
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where

N
vp(zg) = Zai%‘(mz),

i=1

SDilvj € P1(V;) and ¢i(jh) = 6;; (Kronecker’s delta).

5.2. DUAL APPROACH

Let us recall that the dual problem (47) is equivalent with the constraint mini-
mization problem (48). Applying the Lagrange multiplier method to the latter, we
arrive at the following problem: Find a couple {o", A} such that the Lagrangian

d
(73) 2L\ = %“"'h”?z(u;.) + Y A ((o", e(wr)>n(”h) — Z(vh; wr))

r=1

attains a stationary value on Hp(v;) x R%. In accordance with the formula (56), we
shall write

(74) ot = g0,

=1

where 9(*) are basis functions of the space Hx(vs).
The vanishing variations of the Lagrangian with respect to ¢* and A yield

d
h 9(i) (%) = i —
(@9 + A (9D e(wr)) | =0, i=1,s,

r=1

(75) <a",e(w,))n(“) = F(vp;wy), r=1,...,d

Substituting (74), we arrive at the linear system

()-(2)

where B B
B= 11, 12) ,
(BTZ’ 0
By, is the s x s Gram matrix (9),99))q(,,), B1z is s x d matrix (9, e(wr»n(u,.)

and G is d x 1 matrix & (vs; wr). Note that all matrices depend on the design vector

parameter a.
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We insert (74) into the formula for j. to obtain
Z(a) = Z(a, q(a)) = je (va(a), Z q,-(a)ﬁ(")(a)).
i=1

Lemma 5.3. Let (5), € € R®, u € R4, be the solution of the Adjoint Problem

s (5)-("40).
Then

(18) VaZ(a) = VaZ(a,0)|,_ ) + ((vag(a)) — (VaB(a)) (iii;))T ( Z ) .

Proof. Obviously, we have

(79) VaZ(a) = VaZ(a,q) + (Vae(a)) V,Z(a, ).

o= (1)

and differentiating (76), we obtain

Denoting

(80) (VaB()Q(a) + B(a)VaQ(a) = (vag(a)> '

Using the symmetry of B(a), (77) and (80), we find that

(Vat(@))Vy2(a,0) = (aQ@)” (V20D

(81) = (V.Q(a))" B(a) (i )

~((v.610) -v-t000) (3).

To obtain (78), it remains to substitute (81) into (79).

We may easily derive the following lemma.

Lemma 5.4. Components of VyZ(a,q) are
0Z(a,q) 1 2 / A &) 1 h
—_— = - H(a~»(a)—k)19-~(a)-—/ H (—det(c"(a) — x))
Og € ,z:{ a@ P e Ja
(82) x [(oha(@) — 1) 952(@) + (ohi(a) - £)95)(@) — 20%s(a)912 ()] d,

t=1,...,s.
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Components of V,Z(a,q) are given as follows

s

1 2 )
_a_%(:j,_q) =/0 <Pj(z'2)17(vh(x2),z2) dzs + é;[/ H(d,,(a) k) Zq 19“ ( )

1
)+ [t (A =B o) ] = [ (-ter(@) - )
0

: 99\)(a) 6022(@

q'((a%(a) - k)_a‘;‘ + (01 (a) — k) —22—= — 207,(a) 2 12](a)) dz

1 _
——/(; <pj(:c2)(det(0'h(a)—x)zl:uh(h)) dmg], j=0,...,N.

Remark 5.1. For computation of V,K(a), Vab(a) in (67) and of V,B(a),
V.G(a) in (78) we can use the isoparametric technique — see [4].

6. CONVERGENCE ANALYSIS

In the present chapter we investigate the distance between approximate and exact
solutions. We divide the analysis by introducing an intermediate Penalized Optimal
Design Problein, i.e., the following problem

(84) ve = argmin j. (v, o(v)),

V€U,

where j. was defined in (41).

First of all we shall prove the following existence result.

Proposition 6.1. There exists at least one solution of the problem (84) for any
positive parameter €.

For the proof we shall need an auxiliary lemma.
Lemma 6.1. The functions
v fi(v,0(v)), i=1,2,3,

are continuous in the subset Y C C([0,1]).
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Proof. Considering ¢ = 1,2, we may write for any sequence v, — v in C([0, 1]),

vn € Yya,
s(om o)) = (w0 @)1 = | [ [(Guton) = 0)" = @u(0) = £)] o
< [ uon) = o] da

< (meas 25)5[|3(va) — 6(v)[0,0,-

The continuity of f;(v, o(v)) therefore follows from Proposition 2.1. Further, we may

write

|fs(vm, 0(vm)) — fa(v, 0(v))] = I/n (det(on — ) "da _/n (det(c — ) de]
- I/ﬂ ((det(3n — )™ ~ (det(s — »)) ") de|

< | det(6n — 3¢) — det(o — 3¢)|dz — 0
s

again by virtue of Proposition 2.1. a

Proof of Proposition 6.1. The set %q is compact in C([0,1]). The func-
tionals j(v), fi(v, o(v)) are continuous in C([0, 1]) by virtue of Lemma 6.1. Conse-
quently, they are continuous in C1([0, 1]), as well and the existence of a minimizer

of je(v, o(v)) follows. a

Theorem 6.1. Let &gy be non-empty. Let {€}, ¢ — 0% be a sequence and {v.}
a sequence of solutions of the problem (84), {o(ve)} the sequence of corresponding
stress fields. Then there exists a subsequence {€} C {€} and an element v* € %4

such that

(85) ve —v*  in CY([0,1)),

(86) (ve) — a(v*) in S(Qy),

where v* is a solution of the Optimal Design Problem (19), and & denote the exten-
sions of the stress fields by zero.

Proof. Since @q is compact in C1([0,1]), there exists a subsequence {ve} C
{vc} such that (85) holds with v* € %,4. Proposition 2.1 implies (86). Let us show
that the function v* is a solution of the Optimal Design Problem (19).
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From the definition of (84) it follows that

(87) §0) + 3 3 filve,0(0e)) <) + 1Y fi(w,0(0)
i=1 i=1

holds for any v € 4.
Taking now an element v € &,q, we are led to

€J(v£)+2f'('ve)a(”e ) \é“( );

i=1

3
Ef. vz, a(ve < &j(v).
i=1

Passing to the limit with £ — 0% and using Lemma 6.1, we get

Zf,- (v*,o(v*)) = 0.

Consequently, v* € &4 follows easily by definitions. Then (87) implies

J(ve) < jlve) + = Zf, (ve, o(v2)) € G(v) Yo € Kua.
Passing to the limit with € — 0% and using (85), we deduce that
J(v*) <j(v) Vv € &uq.

O

To analyze the convergence of approximate solutions v§ of the problems (42), we
shall need the following assertion.

Proposition 6.2. Let {vp}, h — 0%, be a sequence of v, € %y such that

(88) v, — v in C([0,1]).
Then
(89) " (vn) = &(v)  in S(Q),

where " denote the extensions of o by zero.

The proof will be given later. First we shall prove an auxiliary lemma.
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Lemma 6.2. Let the assumptions of Proposition 6.2 be fulfilled and let u =
up(vs). Then

(90) uhlG,,. — u(v)'Gm (weakly) in [H'(Gr))>? as h—0
holds for any m > i-, (see Lemma 2.1 for the definition of Gm)-
Proof. Let us denote
Q=Q(v), Qn=Q(va)
and define the extensions of u; as follows:
(91) in(z) = un(a*)

where
z* = (2ua(z2) — 21,22) forz € QL —Q,, QF = Q(va + ).

Since the derivatives v}, are bounded, we obtain (cf. the proof of Lemma 2.1)

llanll} ax < (1 +O)lluallg,

with C independent of A. Since 2% D Qq = Q(v + £) for all h < ho(a),
(92) linllLe, < (1+C)3Cs VA < ho(a)

holds, by virtue of the upper bound

(93) lurlli,00 < Cs Vh.

The latter estimate is a consequence of (5) and (7), since vy € % and Vi(vy) C
V(’U},).
Then a subsequence (and we shall denote it by the same symbol) of {a} exists,

such that
(94) @tp — @ (weakly) in [H'(Q4)]?

for soie @ € [H'(Qa)]?. Since @, € V(v + §), we deduce that & € V(v + ).

Let any w € V(v) be given. We construct an extension w of w by means of
the symmetry ‘(91) with respect to I'(v) and repeat the procedure j-times, where
i =[] +1 (i.e., with respect to I'(v + @), I'(v + 2a),...) if j > 1. Thus we obtain

an extension w € V(6).
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There exists a sequence {wy},n — 0%, such that w, € [C®(Qs)]%,w, = 0 in a
neighbourhood of the z;-axis and

(95) w, — W in [H(Qs)]%.

Let us consider a family of triangulations {Z;*(vs)}, generated as extensions of
{Z(vn)} to the domain s, which obey the same rules. By direct calculations,
we can verify that the family

{F(vn)}, h—0, vy € %a’::l’

is regular (i.e., a positive constant ¥y exists, independent of h and vy, such that any
interior angle in any Z*(vs) is not less than 9g).

Let mpw, be the linear Lagrange interpolate of wy over the triangulation Z;*(vs).
Obviously, we have

”hw'lln,. € Vi(vn) Vh,

(96) llmnwy — wylli,as < Chlwyll2,0,-
We may write
(97) a(vh; up, Thwy) = F(vh; Thwy).

Let us pass to the limit with A — 0F. We have

la(vn; un, Thwy) — a(v; &, wy)| < |a(va; un, Thwy — wy)|
+ |a(vn; un, wy) — a(v; @n, wy)|

+ la(v; uy — 4, w,,)| =K; + K, + Kg;
K1 < Csllunlly,aullmawy — wylli,a, < C3CsChllwy|lza, — 0

by virtue of (6), (93) and (96);

K> < / |eijmiei; (B )emi (wy)] dz < Cllanlly,a. llwglly, a0 0) = 0
A(Qn,0)

making use of (92) and
(98) meas A(Qh, Q) b d 0;
K3 — 0 follows from the weak convergence (94).
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Consequently, we have
(99) lim a(vn; un, Tawy) = a(v; @, w,).
It is easy to derive
(100) ’}1_51(1) F(vh; Thwy) = F(v; w,)

In fact, we may write
| F (vh; Thwy) — F(v;wy)| < l/ FT(mw, — w,,)d:cl
Qn

+|/ FTw, d:r:—/ FTw,,dz|+|/ g7 (mhw, — wy)dT
Qn Q To
S I llo,aslimawn — wyllo,,

+ [ 1FTunldz+ Clllloryllmawy — wnll, =0,
A(S2,9)

using (96), (98) and the Trace Theorem on the space [H(Q2;)]%.
Combining (97), (99) and (100), we arrive at

a(v; o, wy) = F(v; wy).
Passing to the limit with 7 — 0 and using (95), we obtain
a(v; 4, w) = F(v; w).

By virtue of the unique solvability of the problem (2), (see Lemma 1.1), ﬁln = u(v)
follows and the whole sequence {ﬁhln} tends to u(v) weakly in V(v). Finally, (90) is
an immediate consequence of this result, since Gy, C Q for all m > 1 and | G =
uh(vh)le holds for all A > hg(m) such that G, C Q4.

Proof of Proposition 6.2. Let us denote 0 = o(v). From Lemma 6.2
and the definition of o” it follows that

1
(101) o"| (weakly) in S(Gm) VYm > —.

Gm U|G,,,
Let us show that
(102) &" — & (weakly) in S(§2s) for h — 0.
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To this end, let us consider any ¢ € S(§2).- Then we have

[(6,5)q, ~ (0. 0,] < [(0:0")g,. ~ (010N +(£.0M)a, 0, = (017)a,
< [(pro* = )| + [0 |+ 0. Do, |
=K+ K, + Ks.

Making use of (101), we conclude that
K, —0.
Furthermore,
Kz < |lelloan-cnllellogn =0 ifh—0, in— 00, h < ho(m),

since

llo"llo,n SC VR
(cf. the definition of o” and (93)) and
1
meas(Qp — Gm) < . + ljvn = v|Joc — 0.

By definition of G,
K3z — 0 for m — oo.

Combining the three limits, we obtain (102).
Making use of the inverse relation

e(up) = bo™,
we may write
(103) <&h,b6h>n5 =a(vh;uh,uh) = 9(1)],;11];).
On the basis of Lemma 6.2 we can prove that
(104) ’}irr(l) F(vh;un) = F(v;u) = a(v; u,u) = (6(v), b5 (v))q,

Ihdeed, the same arguing as that in proving (31) can be applied, if we replace Q, by
Qp and u, by up, respectively.
From (103) and (104) we conclude that

(105) lim (6",06")q, = (5(v),65(v))q, -

The equivalence of the energy norm with the standard norm of S(;) , the weak
convergence of {#"} and (105) yield that

|6 = &(v)l|o,05 — O for A — 0.
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Using Proposition 6.2 and arguing like in the proof of Lemma 6.1, we obtain the
following assertion.

Proposition 6.3. Let the assumptions of Proposition 6.2 be satisfied. Then
Jim i (on, 0" (un) = e (v, 0 (0)-
Theorem 6.2. Let {vi}, h — 0%, be a sequence of solutions of the Approximate

Optimal Design Problems (42). Then there exists a subsequence {vf} C {v}} and
an element v¢ such that

(106) v —v°  in C([0,1]),
(107) F"(v) — &(v*)  in S(Q)

as h — 0, and v* is a solution of the Penalized Optimal Design Problem (74).

Proof. Since %} C %2 for any h and %2, is.compact in C([0, 1]), there exists
a subsequence {v§} such that (106) holds with v* € % By a slight modification of
Lemma 3.2 in the paper [8], we obtain that v* € Z,g4.

Let us consider an arbitrary v € %,4. From (a modification of) Lemma 3.1 of [8]
it follows that a sequence {v;} exists such that v; € ?/a':'i and

v; — v in C([0, 1]).
By definition, we may write
Je (v§, " (v)) < Je (v, o™ (v7))-
Let us pass to the limit with h — 0 and apply Proposition 6.3 to both sides of the
inequality to obtain
Je (05, 0(5%)) < e (v, 0(v)).

Consequently, v is a solution of the problem (84). The convergence (107) of stress
fields follows from Proposition 6.2. [m]

Finally, let us discuss the dual approach to approximate solutions ¢"(vs) of the
elastostatic problem, i.e., let o"(vs) be determined by (47).
Assuming that the coefficients are piecewise constant, i.e.

(108) b.-jmz(or cijmi) € Po(K) Vi, j,m,1=1,2

and for all K € Zi(vn), h — 0*, vy € %a’:i’ we shall prove that Proposition 6.2

remains true.
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Proof of Proposition 6.2.
1° We may decompose o = o*(v;,) as follows

ot = rno(vy) +wh,
where 7, is the projection mapping from the proof of Lemma 4.1. Recall that
rho(vy) € Ex(vy) and  w" € Ep(vp).
Therefore, we get b); (47) that
0= (" w")a, = (rno(vn),w")a, + W[, -
Consequently,

h
llw* I, < lirno(on)llanllw® llas,

vl < Clirao(va)llo,an < Clio(va)lloan < CCs
by virtue of Lemma 1.1. Then
15" 110,05 < lirao(vn)llo,an + llw*llo,0n < C
and a subsequence of {5"} exists such that
(109) " — o (weakly) in S(s)

for some o € S(Qs).
Next we shall prove that

(110) oc=0 ae. in Q- Qv).
Let a subset D C Qs — Q(v) exist such that meas D > 0,
lleflo,p > 0.
Denote by xp the characteristic function of the set D. From (109) we deduce that
(7 X00)q, — (7. x09)q, = llellsp > 0.
On the other hand,
(5" x00),| < 17" lo.aullollo,ony — 0 for h =0,
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since " are bounded in S(Q5) and
meas(D N Q) — 0.

Thus we arrive at a contradiction and (110) is verified.
Moreover, we can show that

(111) o) € ().

Indeed, let us consider any w € V/(v), its extension w € V/(6) and a sequence

{wn},n — 0%, such that (95) holds. Using the Lagrange linear interpolate m,w, €
Vi(vn) , we may write

(5",e(1rhw,7))n6 = F(vn; Thwy).
Making use of (96), we obtain that
lle(mnwy) — e(wn)llo,as < Chllwyll2,0,-

Passing to the limit with h — 0, and using also (109), (100), we arrive at
(7, e(wy))q, = F(v; wy).

Passing to the limit with 7 — 0 and making use of (95), (110), we are led to (111).
2° Next we show that

(112) (0,)a@) =0 Vr € E°v),
where
E°(v) = {7 € S(Q))| (1, e(w))quy =0 VYw e V(v)}.

Let an arbitrary 7 € E%(v) be given. Let us define the extension 7 by zero for all
z; > v(z2), 0 < z3 < 1, and introduce a modified function 7* by the formulas

T,-'}(.’B], T3) = aijTij(tz1,z2), (no sum),
where
t=14A, A>0,
ayy =t71 app =t, ap = 1.

Let us employ new variables

vy =tzy, Y2 =22

236



and consider any function w € V(vy). If we define a new function w* = (w}, w}) by
the formulae

w;(y) = t_lwl (%,W) )

Y
wi(y) = ws ($,02),

then w*lﬂ(u) € V(v) for all h < ho()). We may write

(T e(w))g, = ./n(z) a;j7ij(tz1, 22)eij (w) dz =/n )Tij(y)eij,(w'(y)) dy =0,

1 (v
Q (%) C Q; and T € E°(v),
enn(w(z)) = enn(w*(y)), ezn(w()) = ezz(w*(y)),
e1z(w(z)) = terz(w*(y)).
Consequently,

™|q, € E%(va)  Yh < ho(}).

It is readily seen that
rar € ED(vn),

since
(rh‘r’\,e(wh»nh = <T/\!e(wh))n,‘ =0

holds for any wy € Vi(vn) C V(vp).
By the definition (47)

(113) (", ram)ay = (Gn,mam)as =0

(w};ere ry, applies to the extended triangulation Z,*(vs)). It is well-known that
hl_ip;) llram* = 7*|lo,s = 0.

Passing to the limit with A — 0 in (113) and using also (109), (110), we arrive at

(114) (0,™)aw) = 0.

Next we show that

(115) lim [|7* = 7{lo,a() = 0.
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Indeed, since y = (tz1,z2) and T,-)J‘- (z) = ai;7ij(y), we may write

I7*(z) = r(@)Il < I7(2) = FW)I| + 17(w) — (=)l < AF)I + [17(y) - ()|
so that

I =l = [, 1) - reliee

< 2A2/ I ()||?d= + 2/ 17(y) = m(z)||*dz = J; + J>.
) Q(v)

It is obvious that

hszv/|mmwww as A — 0.
t Jaw)

We can prove that J; tends to zero, as well, applying the following argument. There
exists a sequence {7"}5%; such that

(116) ™ e [op@)] ns@w), -7 in S@w)).
We extend 7" by zero outside of (v). Then

(117) ™) = ™ (@)llo,ae) < BT ller ()

follows from the mean value theorem. Moreover, we find that

) [0 -l <=l =0 e n oo
Finally, we may write

I17(¥) = 7(@)llo,0) < IF(W) — 7" (W)llo,00)
7" (@) = 7" @)llo,aw) + 17" = llo,aev)

and using (118), (117), (116), we obtain J, — 0 as A — 0. Consequently, (115) has
been proven. Passing to the limit with A — 0 in (114), we arrive at (112). From the
unique solvability of the problem (46) it follows that

U|ﬂ(v) = o(v)

and the whole sequence {5"(v;)} tends to &(v) weakly in S(Qs).
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3° It remains to verify the strong convergence. Making use of (47), we can write
(119) (6", 6")q, = (ah,rha(vh)+w")m = (a",rha(vh))m

since wh € EY(v).
On the other hand, we have

(120) (ah, rha(vh))nh = (bah,rha(vh»nh = (ba",a(v;.))nh = (&, 5(vn))a,,

since bo* € Hy(vy) follows by the assumption (108). Using Proposition 2.1 and the
weak convergence of " (see (109)), we obtain that

(121) (8",8(vn))q, — (5(v),6(v)), as h — 0.
Combining (119), (120) and (121), we arrive at
(122) (", 6"q, — (5(v),5(v))a, ash—0.

The equivalence of the norms, the weak convergence and (122) imply that

15" = &(v)llo,0s < ClIG" = 5(v)lla, — 0.
O

It is easy to see that Proposition 6.3 and Theorem 6.2 remain true, provided the

coefficients of the stress-strain relations are piecewise constant (108).
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MINIMALIZACE VAHY PRUZNYCH TELES, KTERA NEVZDORUJ{
VETSIM TAHOVYM NAPETIM
I. OBLASTI S JEDNOU ZAKRIVENOU STRANOU

IVAN HLAVAGEK, MICHAL KRiZEK

Uvazuje se optimalizace tvaru rovinného pruzného télesa za piedpokladu, Ze material
nesnese vétsi tahovd napéti. Jde o zobecnéni problému zdéné piehrady, zatizené vlastni
vidhou a hydrostatickym tlakem. Je dokdzdna existence optimalni oblasti. Na zdkladé metody
penalizace a koneénych prvki se navrhuji pfibliznd feSeni a studuje je;iich konvergence.
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