Previous |  Up |  Next

Article

Keywords:
Hilbert-space-valued state; $h$-state; finitely additive orthogonal vector states; normed measures; Hilbert logic; extension property
Summary:
We analyze finitely additive orthogonal states whose values lie in a real Hilbert space. We call them $h$-states. We first consider the important case of $h$-states on a standard Hilbert logic $L(H)$ of projectors in $H$-we describe the $h$-states $s$: $L(H_1) \rightarrow H_2$, where $\text {dim } H_2 \leq$ \text {dim} H_1 < \infty$. In particular, we show that, up to a unitary mapping, every $h$-state $s$: $L(H)\rightarrow H(3\leq \text {dim } H < \infty)$ has to be concentrated on a one-dimensional projection. We also study the $h$-states $s$: $L(H_1)\rightarrow H_2$ for the case of $\text {dim } H_1 = \infty$. The results of the first part complement the papers [10] and [13]. In the second part we investigate $h$-states on general logics. Being motivated by the quantum axiomatics, the main question we ask here is as follow: Given a Hilbert space $H$ with $\text {dim } H < \infty$, what is the class of such logics $L$ that, for any Boolean subalgebra $B$ of $L$, every $h$-states $s$: $B \rightarrow H$ extends over $L$? We answer this question by finding a simple condition characterizing the class (Theorem 3.4]. It turns out that the class is considerably large-it contains e.g. all concrete logics-but, on the other hand, it does not contain all finite logics (we construct a counterexample in the appendix).
References:
[1] V. Alda: On 0-1 measure for projectors II. Aplikace matematiky 26 (1981), 57-58. MR 0602402 | Zbl 0459.28020
[2] R. V. Kadison J. R. Ringrose: Fundamentals of the theory of operators algebras. Vol. I, Academic Press, Inc., 1986. MR 0859186
[3] A. Dvurečenskij S. Pulmannová: Random measures on a logic. Demonstratio Math XIV no. 2 (1981). MR 0632289
[4] A. Einstein B. Podolski N. Rosen: Can quantum-mechanical description of reality be considered complete?. Phys. Rev. 47 (1935), 777-780. DOI 10.1103/PhysRev.47.777
[5] A. M. Gleason: Measures on the closed subspaces of Hilbert space. J. Math. Mech. 65 (1957), 885-893. MR 0096113
[6] R. J. Greechie: Orthomodular lattices admitting no states. Journ. Comb. Theory 10 (1971), 119-132. DOI 10.1016/0097-3165(71)90015-X | MR 0274355 | Zbl 0219.06007
[7] S. Gudder: Stochastic Methods in Quantum Mechanics. North Holland, New York, 1979. MR 0543489 | Zbl 0439.46047
[8] S. Gudder: Dispersion-free states and the existence of hidden variables. Proc. Amer. Math. Soc 19 (1968), 319-324. DOI 10.1090/S0002-9939-1968-0224339-X | MR 0224339
[9] A. Horn A. Tarski: Measures in Boolean algebras. Trans. Amer. Math. Soc. 64 (1948), 467-497. DOI 10.1090/S0002-9947-1948-0028922-8 | MR 0028922
[10] R. Jajte A. Paszkiewicz: Vector measures on the closed subspaces of a Hilbert space. Studia Math. T. LXIII (1978). MR 0632053
[11] G. Kalmbach: Measures on Hilbert Lattices. World Sci. Publ., Singapore, 1986. MR 0867884
[12] P. Kruszyňski: Vector measures on orthocomplemented lattices. Proceedings of the Koniklijke Akademie van Wetenschappen, Ser. A, 91 no. 4, December 19 (1988). MR 0976526
[13] R. Mayet: Classes equationelles de trellis orthomodulaires et espaces de Hilbert. These pour obtenir Docteur d'Etat es Sciences, Université Claude Bernard-Lyon (France), 1987.
[14] P. Pták: Exotic logics. Colloqium Mathematicum LIV, Fasc. 1 (1987), 1-7. MR 0928651
[15] P. Pták: Weak dispersion-free states and the hidden variables hypothesis. J. Math. Physics 24 (1983), 839-841. DOI 10.1063/1.525758 | MR 0700618
[16] P. Pták J. D. Wright: On the concreteness of quantum logics. Aplikace matematiky 30 č. 4 (1986), 274-285. MR 0795987
[17] F. Schultz: A characterization of state space of orthomodular lattices. Jour. Comb. Theory 17 (1974), 317-328. DOI 10.1016/0097-3165(74)90096-X | MR 0364042
Partner of
EuDML logo