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Summary. We analyze finitely additive orthogonal states whose values lie in a real
Hilbert space. We call them h-states. We first consider the important case of h-states on a
standard Hilbert logic L(H) of projectors in H—we describe the h-states s: L(H;) — Ha,
where dim Hs < dim H; < oo. In particular, we show that, up to a unitary mapping,
every h-state s: L(H) — H(3 < dim H < oo) has to be concentrated on a one-dimensional
projection. We also study the n-states s: L(H;) — Hg for the case of dim H; = oo.
The results of the first part complement the papers [10] and [13]. In the second part we
investigate h-states on general logics. Being motivated by the quantum axiomatics, the
main question we ask here is as follows: Given a Hilbert space H with dim H < oo, what is
the class of such logics L that, for any Boolean subalgebra B of L, every h-state s: B — H
extends over L? We answer this question by finding a simple condition characterizing the
class (Theorem 3.4). It turns out that the class is considerably large—it contains e.g. all
concrete logics—but, on the other hand, it does not contain all finite logics (we construct a
counterexample in the appendix).
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AMS classification: 03612, 81B10, 28B05

1. PRELIMINARIES

Definition 1.1. A (quantum) logic is a set L endowed with a partial ordering,
<, and a unary operation, /, such that

(1) 0,1€1L,

(i) a<b=>b < a foranya,beL,

(iii) (a')’ = a for any a € L,

(iv) a V b exists in L whenever a,b € L and a < ¥/,
(v)aVa'=1foranya€ L,

(vi)b=aV (bAd') whenever a,b € L and a < b.
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In what follows, let us reserve the symbol L for logics. As a prototype of a logic
we may take a Boolean algebra or the lattice L(H) of all projections in a Hilbert
space H. Generally, a logic need not be distributive and need not be a lattice. A
systematic treatment of logics together with the physical interpretation can be found
in [7].

Definition 1.2. Let L be a logic and let H be a real Hilbert space. A mapping
s: L — H is called a Hilbert-space-valued orthogonal state (abbr. an h-state) if the
following two conditions are satisfied:

(1) "s(l)" =1 (here || || stands for the Hilbert norm in H),
(i1) if a,b € L and a < b’ then s(a) is orthogonal to s(b) (in H) and, moreover,
s(a Vv b) = s(a) + s(b).

The h-states have been investigated in the articles [3], [10] and [13], in the two
former cases in the o-additive setup and stochastic vein, in the third case in the
realm of universal algebras. The h-states can be viewed as generalized two-valued
states as the following simple proposition asserts. In the proposition (and in all what
follows) we denote by Sk (L) the set of all h-states s: L — H.

Proposition 1.3. Suppose that H is a Hilbert space. If s € Sy(L) then

(i) 5(0) =0,

(ii) the set R(s) = {p € H | p = s(k) for k € L} is contained in the sphere
Sy (s(1)), where s(1) is its centre and 1 is its radius,

(iii) if H = R then R(s) = {0,1},

(iv) the mapping t,: L — (0,1) defined by the formula t,(k) = "s(k)"2 is an
ordinary state on L (i.e. t, is a probability measure).

Proof (see also [13]).

(1) Since s(1) = s(1 vV 0) = s(1) + s(0), we see that s(0) = 0.

(ii) Suppose that p = s(k), where k € L. If (.,.) denotes the inner product in H,
we have

(s(k), s(1) — s(k)) = (s(k), s(k)) =0

and therefore
2 .
() = Z2| = 2 (60— (o) = s(8), o(k) = (o1 - s(4))) =

1 1
= 7Us®I* + Is)]) = 5.
(iii) A simple corollary of the case (ii).
(iv) If k1, k2 € L and ky < k5 then

ty(ky V ko) = ||s(k1 V k2)||* = ||s(k1) + s(ks)|)” =
= [|sCk0) || + [|sCka)||* = ts (k1) + ta (ka).
Further, t,(1) = "5(1)”2 = 1. Thus, t, is an ordinary state on L. O
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2. HILBERT-SPACE-VALUED STATES ON HILBERT LOGICS

In this section we characterize the h-states s: L(Hy) — H2, where dim Hy <
dim H; < oo. (The case of dim H; > dim H; does not seem to allow a lucid charac-
terization.) To avoid usual pathologies occurring in this area of problems, we restrict
ourselves to the case of dim H; > 3.

Let us first consider the case of dim H; = dim Hs < oco. Thus, we suppose that
H, = H, = H and 3 < dimH < oo. In this case we have some natural h-states at
our disposal—if v € H with ||v]| = 1 then the mapping s, : L(H) — H given by the
formula s, (Pa) = Pmv, where Py denotes the projection of H onto M, is obviously
an h-state. Let us call it the h-state associated with v € H. Our main result in this
part asserts that Sy (L(H )) essentially contains only these h-states. This extends
the research of R. Mayet carried on in [13). (Prior to the next theorem, let us recall
that a linear mapping U: H — H is called unitary if (U(z),U(y)) = (z,y) for any
z,y€ H.)

Theorem 2.1. Let H be a Hilbert space such that3 < dimH < oo. Ifs: L(H) —
H is an h-state then there exists a unit vector v € H and a unitary mappingU: H —
H such that s = U o s,, where s, is the h-state associated with v € H. (Thus, for
s: L(H) — H there is a unit vector v € H such that "s(P.,)" =1)

Proof. We shall need three lemmas.

Lemma 2.2. Suppose that dim H = n. Suppose further that we are given n + 2
vectors in H. Then there is a pair among the vectors, say vectors z, y (¢ # y), such
that (z,y) > 0.

Proof of Lemma 2.2. We shall proceed by induction. The case of n = 1 is
obvious. Suppose that the statement of Lemma 2.2 is valid for n—1 and suppose that
we have n+2 vectors in H, say z1, T2, . . ., Tnt+1, Tnt+2. Take a subspace M of H which
contains the vectors z1, z3, ..., z,—1. We may suppose that dimM = n — 1. By
the inductive assumption, there are pairs {y1,2z1} C {z1,...,Zn, PMZn, PMTn41},
{yz, 22} C {.’Cl, ey Tn-1, PMTnt1, PM.’En+2} and {ya, 2'3} C {.’01, ey Zp-1, Py,
Ppzngo} such that (yi,2) >0 (=1, 2,3). If {gi,z}N{z1,...,2n-1} # 0 for
at least one ¢ € {1,2,3}, then the proof is complete. Suppose on the contrary that
(PM:C,,,PM:I:,,+1) >0, (PMx,,,PMxn.,.g) > 0 and (PM.Z"+1,PM.’L'"+2> > 0. Let K
denote the orthogonal complement of M in H. Then dim K = 1 and we infer that
at least one of the numbers (Pxn, PkZnt1), (PkZn, PkZny2) and (Pkz,, PkTnt1)
is nonnegative. Suppose that (Pxzn, PkZn4+1) > 0 (in the other cases we proceed
similarly). Then (z,,Zn41) = (PMZn, PuTnt1) + (Pk2n, PkTn4+1) > 0 and this
completes the proof of Lemma 2.2. a

53



Before we formulate the following lemma, let us recall that the trace of an operator
n
A: H — H, denoted by Tr A, is the number ) (Aeg,er), where e, eg, ..., €, is an
k=1

arbitrary orthonormal basis of H.

Lemma 2.3. Let H be a Hilbert space such that 3 < dim H < co. Then for any
h-state s: L(H) — H one can find a nonnegative operator T,: H — H such that,
for any Py, Py € L(H), it satisfies the equality

(s(Pm), s(Pn)) = Tx(T, PmPn) = Tx(T, Pn Py).

Proof (a sketch, see also [10]). By Prop. 1.3, the mapping t,: L(H) — (0, 1)
defined by setting t,(Pux) = ”s(PM)”2 is an ordinary state on L(H). Thus, by
the famous Gleason’s theorem [5], we can find a nonnegative operator T, such that
ts(Pm) = Tr(Ts Py) (Pm € L(H)). Let S(H) denote the linear space of all sym-
metric operators on H and let us extend s to a linear mapping §: S(H). This
can be done in a straight-forward manner since S(H) is generated by all projec-
tions (see [2]). Moreover, every A € S(H) can be expressed as a linear combi-
nation of mutually orthogonal projections [2], and therefore ”.§(A)“2 = Ti(T, A?).
In particular, if Py, Py € L(H) then ||§(PM + PN)"2 = Tx(Ty(Pu + Pn)?) =
2 Tx(Ts PrPN) + Tx(Ts Par) + Tr(T, Pn). So we have 2<s(PM),s(PN)> = "s(PM) +
s(Pn)||* = ||s(Pa)||” = ||s(Pw)||* = 2Tx(T: ParPn) and the proof of Lemma 2.3 is
complete. O

Prior to the formulation of the following lemma, let us agree to denote by P,
(v € H) the projection on the linear span of the vector v.

Lemma 2.4. Let s: L(H) — H (3 < dimH < o) be an h-state. Then there
exists a vector v € H such that ”s(Pu)" = 1. (A corollary: If we define t,: L(H) —

(0,1) by setting t,(Pp) = ”s(M)”z, then t, is a pure state on L(H).)

Proof oflemma2.4. Let T, : H — H be the operator from Lemma 2.3. We shall
show that T has to be a projection on a one-dimensional subspace of H. Suppose on
the contrary that e, e; are unit orthonormal eigenvectors corresponding to positive
eigenvalues A, A2. Suppose that dim H = n and take an orthogonal basis vy, vs, .. .,
v, in H. Obviously, we may take it such that ||Py,e;]| #0 (i =1,2,...,n,j =1,
2). Then

s S(Pej) - 1 P..) = \/A;||Pv,e; 2
<(P"-')’||s(pe,.)||> TP = VR
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(i=1,2,..,n,j=1,2). Moreover, we have

s(P.;)

Sy (i=1,2,...,0),
lls(P)ll ~

2
s(Py;) = Zl V | Po.eslI?
J=

where z; is orthogonal to both s(P.,), s(Pe,). According to Lemma 2.2, there is a
palr of indices 71, iz such that (z;,,2;,) > 0. Then we obtain (s(P,,") s( ,,‘7)) =

Z AillPo;, €il1 - ||Pos, €5 11% + (2iy, 2i,) > 0, which is a contradiction—the vectors vi,,
=1

v;, are orthogonal and so are the vectors s(P,, ), s(Py,,). It follows that 7, is a
one-dimensional projection and the proof of Lemma 2.4 is complete. a

Let us now return to the proof of Theorem 2.1. Let v € H be a unit vector
such that Ty = P, (Lemma 2.3, 2.4). Let s, be the h-state associated with v. We
shall first prove that (s., (Pnr), v (PN)> = (s(PM),s(PN)) for every Py, Py € L(H).
Indeed, we have (s,,(PM), s,,(PN)> = (Pmv, PNv) = (PN Pmu,v) = (PnPyv, Pyv) =
(Py PN Ppu,v) = Tr(PyPnPuym) = (s(Pum),s(Pn)). Put, as before, R(sy)
{_s,,(PM) | Py € L(H)}, and introduce a mapping u: 'R,(s.,) - H by putting

U(sy(Pyu)) = s(Pu) (Pm € L(H)). Let us check that U is well deﬁned and can

I

be linearly extended over the linear span of R(sy). Suppose that Z a;sy(Pum;) =
i=1
sy(M), where o; € R and Py, € L(H) (i < m). We obtain

m 2 m .
ig CYiS(PM.') - S(M) = ; S(PM + HS(PM)" -2 <.§1 a,s(PM‘ S(PM)>
= i:j + "3u(PM)” <'§ @isu(Par,), 5o(Pnr)
= | assu(Pa) -

The rest is easy—by applying the equality (s,(Ppm), su(Pn)) = (s(Par), s(Pn)) we
extend U to a unitary mapping & : H — H and the proof is complete. O

Let us now consider the case of the h-states s: L(H;) — Hj, where dim H; <
dim H;. The situation here is quite transparent.

Theorem 2.5. Let Hy, Hy be Hilbert spaces with dimH, < dimH; < oo,
dim H; > 3. Then there is no h-state s: L(H,) — H,.

Proof (see also [13]). Suppose that dim H; = m. Suppose further that
s: L(H;) — H» is an h-state. Then t,: L(H,) — (0,1), t, (PM) = ||s(Pa)||” is

a state on L(H1). By Gleason’s theorem [5] we can write t,(Pp) = 2 a. "PM(U,)"
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where a; > 0 and v; # 0, v; € H (i < m). Let e;, e3, ..., e, be an orthogonal basis
of Hy which is taken such that (e;, v)#0 (< m). Then

t,(Pe'.) = f: aj”(e.',vj)e;"2 > a1|(e,',‘l)1>|2 > 0.
i=1

This implies that s(P.;) # 0 (i < m). Since the vectors s(P,;) have to be mutually
orthogonal in Hj, we have derived a contradiction. The proof of Theorem 2.5 is
complete. O

Obviously, the assumption of dim H; > 3 in the last theorem is essential. For
instance, if we define a mapping s: L(R?) — R! by putting s(P,) = 1 or s(P,) = 0 if
argv € (0, %)U (7r, %") or argv € (%, 7r)U (37", 27r), respectively, then s can be easily
extended over L(R?) to an h-state. It should be also noted that a simple alternation
of this example gives an h-state t: L(R?) — R? which does not allow the description
of Theorem 2.2.

To conclude this section, let us ask if Theorems 2.1, 2.5 remain valid for dim H; =
o0o. As we shall see, Theorem 2.5 remains valid while Theorem 2.1 does not.

Proposition 2.6. Let H,, Hs be Hilbert spaces such that dim H; = oo, dim Hs <
oo. Then there is no h-state s: L(H,) — H,.

Proof. Suppose that dimH; = n and write H; = @ Hqa, where each H, is
a€l
a unitary copy of an (n + 2)-dimensional Hilbert space K. Define now a mapping

f: L(K) — L(H,) such that, for any Py € L(K), f(Pm) = @ Pwum,, where M, is
a€l

a unitary copy of M. One can easily check that f(Py V Py) = f(Pum)V f(Pn) and
f(Pk) = Pn,. Moreover, if Py is orthogonal to Py then f(Pp) is orthogonal to
f(Pn), too. If s: L(H,) — H3 is an h-state, then sois § = so f: L(K) — H, which
contradicts Theorem 2.5. The proof of Theorem 2.6 is complete. a

It should be noticed that the above proposition generalizes the analogous result
for two-valued states (see [1]).

Proposition 2.7. Let H be a Hilbert space with dim H = co. Then for every
natural number n € N there is an h-state s: L(H) — H such that ||s(Py)| < 1
whenever dim M = n.

Proof. Let v1, ... vn41 be such nonzero orthogonal vectors in H that
n41 n+1 .
3" |luil|> = 1. By identifying H with the direct sum @ H;, where H; = H (i <
i=1 i=1

n+1
n+1), we can define an h-state s: L(H) — H be setting s(Pn) = @ Pnv;. Then for
i=1

2 n+1
the state t, associated with s, t,(PN) = HS(PN)” , we have t,(Py) = 21 ”PNU"HZ'
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Let M be a subspace of H with dimH = n. We shall prove that HS(PM)" <L
Looking for a contradiction, let us suppose that ||s(Par)|| = 1. Then for the orthog-
onal complement M’ of M we have t,(Pp+) = 0. Thus, Pypv; =0 (i < n+1). We
finally obtain that v; € M (i=1, 2, ..., n + 1), which is a contradiction. The proof
is complete. O

Remark 2.8. It should be noted that in the paper [12] the author studies
formally similar questions to those we pursued in this section (esp. in Theorem 2.1).
However, we have not been able to establish any concrete direct dependence of our
results to his paper and vice versa. Moreover, he deals exclusively with Hilbert spaces
over the complex numbers where he has the spectral theorem and its consequences
at his disposal. We study only real Hilbert spaces where we cannot benefit from
the spectral theorem and therefore have to derive our results by fully geometric
reasonings.

3. THE h-STATES ON GENERAL LOGICS. “RICH” LOGICS AND EXTENSIONS
OF h-STATES

Let H be a Hilbert space with dimH < oco. As we have seen, there are logics
having no h-states with values in H (Theorem 2.5). In fact, this “pathalogy” may
occur even for finite logics (see the next section). Obviously, if we contemplate a
potential application in quantum axiomatics we would be interested rather in logics
having reasonably many h-states. This leads us to the following definition. (As
usual, by a partition of unity we mean a set {a; | i < n} of nonnegative numbers
such that i a;=1)

i=1

Definition 3.1. Let H be a Hilbert space and let dimH = n < co. Let L be
a logic. We say that L is H-rich if for any partition of unity {a; | ¢ < n} and any
set {k;i | ¢ < n} of mutually orthogonal non-zero elements in L there is an h-state
~s: L — H such that "s(lc,-)”2 =a; (i < n).

Let us first see that for a given H the class of H-rich logics is considerably large.

Proposition 3.2. The logic L(H) is H-rich.

Proof. IfdimH = n and if we are given a partition of unity {a; | i < n} and

a set {Pa; | ¢ < n}. where P4, are orthogonal projections in H, then we can choose

vectors u; € A; such that ||u;|| = \/a;. Then we put s(Py) = PM( 3 u.-). ]
ign

Prior to the following proposition, let us recall a natural and useful class of logics

(see e.g. [7],[15], etc.). Let a logic be called concrete if it can be represented by a

collection, say A, of a subsets of a set S. The relation < in A means the inclusion
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relation and the operation ' means the formation of the complement (in S). Thus,
(S,A) is a concrete logicif 1. § € A. 2. if A€ A then A’ € A,and 3. if A,B€ A
and ANB =0 then AU B € A. Obviously, every Boolean algebra can be viewed as
a concrete logic (we take the set representation).

Proposition 3.3. Let H be a Hilbert space with dim H < oo. Then every con-
crete logic is H-rich.

Proof. Suppose that dim H = n and suppose that we are given a partition
of unity {a; | i < n} and a set {A4; | i < n} C A, where A; are mutually disjoint
nonvoid subsets of S. Choose points p; € A; (i < n) and take an orthonormal basis
of H, {e; | i < n}. For any M € A write C(M) = {i < n | pi € M} and define

a mapping s: A — H by putting s(M) = >, ./aje;. Then the mapping s is an
ieC(M)
h-state and moreover, "s(A,)“ = \/a;. The proof of Prop. 3.3 is complete. O

We will now state the main result of this section. We shall prove that the H-
rich logics are exactly those logics L for which the h-states of Sy(B), where B is
an arbitrary Boolean subalgebra of L, admit extensions to h-states of Sg(L). This
result can be viewed as a generalization of the classical result for Boolean algebras
and two-valued states (see also the comments below). (The following Theorem 3.4
may also have certain hearing on the quantum axiomatics. We can understand the
h-states as “generalized hidden variables” (compare with [4], [7], [13], etc.).) If we
accept the hidden variables hypothesis for L then, for any Boolean subalgebra of L,
the set Sy (L) should contain the set Sy(B). Thus, in this interpretation, Theorem
3.4 establishes the right class of logics for the hidden variables postulate.)

Theorem 3.4. Let H be a Hilbert space with dim H < oo and let L be a logic.
Then the following two statements are equivalent:

(i) The logic L is H-rich.

(ii) For any Boolean subalgebra B of L and any h-state s: B — H there is an
h-state §: L — H such that 5(b) = s(b) for any b € B.

Proof. (ii) = (i). Suppose that dim H = n and suppose that we are given a
partition of unity {a; | i < n} and a set {k; | i < n} of mutually orthogonal non-zero
elements in L. Obviously, the set {k; | i < n} generates a (finite) Boolean subalgebra
B of L. By Prop. 3.3, there is an h-state s: B — H such that ||s(lc,~)“2 = a;. Since
by the condition (ii) the state s has an extension over L, we see that L is H-rich.

(i) = (ii). Let us first observe that Sy (L) is a compact topological space when
understood with the “pointwise” topology. Indeed, the set Sy(L) can be viewed
as a subspace of the topological product EL, where E is a unit ball in H (see
Prop. 1.3). Since E is compact, E¥ is compact as well (Tichonoff’s theorem) and a
straightforward verification gives that Sy (L) is closed in EL.
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Suppose now that we are given an h-state s: B — H, where B is a Boolean
subalgebra of L. Denote by P the set of all finite orthogonal coverings of B. The set
P is naturally ordered by the refinement relation—we write P < R (P, R € P) if for
any p € P there exists na r € R such that p < r.

For any “partition” P = {p1,pa,...,px} € P put Sp = {5 € Su(L) | 5(p;) =
s(pi)}. Let us see first that Sp # 0 for any p € P. Indeed, since s(p;) are orthogonal
in H, we infer that at most n(= dim H) of them differ from 0. Thus, by our assump-
tion, there is an h-state t: L — H such that ||t(p,-)| = "s(p,-)" (i < k). Obviously,
there is a unitary mapping i : H — H such that U (¢(p;)) = s(pi) (i < k). Thus, if
weputt =% ot then t € Sp.

We shall show now that the set {Sp | P € P} is a filter base in Sy(L) consisting
of closed sets. The latter fact is obvious as Sy (L) is endowed with the pointwise
topology. Let us show that for any P;, P2 € P we have Sp, NSp, # 0. Put Q = P1N
P,={pAq|p€ Pi,q € P,}. Then Q € P and one sees easily that So C Sp, N Sp,.
Thus, Sp, N Sp, # 0.

Let us now complete the proof. Since Sy(L) is compact, we obtain [\ Sp # 0.
PeP
Choosen an h-state 5 in ﬂ Sp. By the definition of Sp we have §(b) = s(b) for any

b € B. Therefore § extends s and the proof is complete. a

If we specialize the previous result to concrete logic, we obtain the following result.
It should be noticed that its Boolean corollary generalizes the well-kown theorem on
the extensions of two-valued states on Boolean algebras (see [9]).

Theorem 3.5. Let H be a Hilbert space with dim H < oco. Let L be a concrete
logic and let B be a Boolean subalgebra of L. Then for every h-state s: B — H
there exists an h-state §: L — H such that 5(b) = s(b) for any b € B. A corollary: If
Bi is a Boolean subalgebra of a Boolean algebra Bs, then every h-state s € Sy(Bi)
admits an extension over Bs.

Proof. It follows from Prop. 3.2 and Theorem 3.4. O

4. APPENDIX: A FINITE LOGIC HAVING NO h-STATES

Here we construct a finite logic L such that Sg(L) = @ for any Hilbert space H.
We do so by utilizing the technique invented by R. Greechie ([6]). Since our example
possesses ordinary states, which we leave to the reader to check, it actually presents a
little novelty in this area of orthomodular curiosities. (Since the Greechie technique
has become a “folklore” in orthomodular posets—see [6], [11], [14], [17], etc.—we will
not repeat its ideas here. Let us only recall that the points in “Greechie diagram”
represent atoms in L, and the sets of points connected by angleless lines represent
the sets of atoms in L belonging to a Boolean subalgebra of L.)
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Example. The logic L determined by the Greechie diagram below has no

h-states.

Proof. Lets € Su(L) for a Hilbert space H. We shall prove that s(p) = s(u).

Then by symmetry we obtain s(p) = s(u) = s(r) = s(v) = s(q). Since p, ¢, 7
are pairwise orthogonal then so are the vectors s(p), s(q), s(r) in H. Therefore
s(p) = s(q) = s(r) = 0, which is absurd because p, ¢, r are all atoms of a Boolean
subalgebra of L and therefore ||s(p) + s(q) + s(r)|| = ||s(1)| = 1.

It remains to prove the equality s(p) = s(u). As we see the Greechie diagram,

(s(a) +5(d) + 5(9)) + (s(8) +s(e) + 5(h)) = (s(a) +(5) +3(c)) + (s(d) + s(e) + 5(/))
(here the sums in brackets equal s(1)). We therefore obtain s(g) + s(h) = s(e) +s(f)
and this yields s(p) = s(u). The proof is complete. O
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