[1] S. Agmon A. Douglis L. Nirenberg:
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17 (1964), 35-92.
DOI 10.1002/cpa.3160170104 |
MR 0162050
[2] A. Friedman:
Partial differential equations of parabolic type. Prentice-Hall, INC (1964).
MR 0181836 |
Zbl 0144.34903
[3] A. Kufner O. John S. Fučík:
Function spaces. Praha, Academia (1977).
MR 0482102
[4] O. A. Ladzhenskaya V. A. Solonnikov N. N. Uralceva: Linear and quasilinear equations of parabolic type. (Russian). Moskva, Nauka (1967).
[5] J. L. Lions:
Quelques méthodes des résolution des problèmes aux limites non linéaires. Dunod, Paris (1969).
MR 0259693
[6] A. Matsumura T. Nishida:
Initial boundary value problems for the equation of motion of compressible viscous and heat conductive fluids. Comm. Math. Phys. 89 (1983), 445 - 464.
DOI 10.1007/BF01214738 |
MR 0713680
[7] A. Matsumura T. Nishida:
The initial value problem for the equations of motion of viscous and heat conductive gasses. J. Math. Kyoto Univ. 20 (1980), 67-104.
DOI 10.1215/kjm/1250522322 |
MR 0564670
[8] S. Mizohata: Theory of partial differential equations. (Russian). Moskva, Mir (1977).
[9] J. Nečas A. Novotný M. Šilhavý:
Global solution to the compressible isothermal multipolar fluid. to appear J. Math. Anal. Appl. (1991).
MR 1135273
[10] J. Nečas M. Šilhavý:
Multipolar viscous fluids. to appear Quart. Appl. Math.
MR 1106391
[11] J. Neustupa:
The global weak solvability of a regularized system of the Navier-Stokes equations for compressible fluid. Apl. Mat. 33 (1988), 389-409.
MR 0961316
[12] J. Neustupa A. Novotný: Uniqueness to the regularized viscous compressible heat conductive flow. to appear.
[14] R. Rautman:
The uniqueness and regularity of the solutions of Navier-Stokes problems. Lecture Notes in Math. Vol. 561, Springer-Verlag (1976).
DOI 10.1007/BFb0087652 |
MR 0463727
[16] R. Temam:
Navier-Stokes equations. Amsterdam-New York-Oxford (1979).
Zbl 0454.35073