Applications of Mathematics

Jiti Neustupa; Antonin Novotny
Global weak solvability to the regularized viscous compressible heat conductive

flow
Applications of Mathematics, Vol. 36 (1991), No. 6, 417-431

Persistent URL: http://dml.cz/dmlcz/104479

Terms of use:

© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104479
http://dml.cz

36 (1991) APPLICATIONS OF MATHEMATICS No. 6, 417—431

GLOBAL WEAK SOLVABILITY TO THE REGULARIZED VISCOUS
COMPRESSIBLE HEAT CONDUCTIVE FLOW

Jiki NEUSTUPA, ANTONIN NOVOTNY

(Received December 7, 1989)

Summary. The concept of regularization to the complete system of Navier-Stokes equations
for viscous compressible heat conductive fluid is developed. The existence of weak solutions
for the initial boundary value problem for the modified equations is proved. Some energy and
entropy estimates independent of the parameter of regularization are derived.
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I. INTRODUCTION

The paper deals with the complete regularized system of Navier-Stokes type for
the viscous compressible fluid. It is closely related to [11], [12]. We use the same
type of regularization as R. Rautman in [14] in the incompressible case. We discuss
the following initial boundary value problem for the density g, velocity u = (u,, ..., u
the following initial boundary value problem for the density g, velocity u =
= (uy, ..., uy) and temperature 0:

(1.1) 0.+ (efi;); =0 in Qp,,
(1.2) (ou;), + (ouit) ; — pu;;; — (#f3)u; ;= —P; in Qp, u=0
in Qr, — Qr,
(1.3) e{ef),, + cleiih),; — 20, = —pi; ; + P(u) in Qr,,
(1.4) p = Rel,
(1.5) W(u) = 7j(u) uy,
(rij(u) = 2ue;; — 3uends;, ey = Hui; + uyy)),
(1.6) 0(0) =90, in Q,, u(0)=uy=(ugy,....upy) in Q,

6(0) = 6, in @,

417



(1.7) u=0 on (0,T)x 0, %@ _ 0 on I x 09, (vis the outer

ov
normal to 9Q,).

The coefficients p (viscosity), ¢, (specific heat at constant volume), R (universal
gas constant), 4 (heat conductivity) are positive constants. @ = RY (N = 2,3) is
a bounded domain with a smooth boundary. For A > 0, one defines 2, = {x e RV,
dist (x, @) < h}. We assume that h can be chosen so small that the boundary 6Q,
is also smooth. Let T> 0, I = (0, T); for tel , let Q, =(0,¢) x Q and Q,, =
= (0,1) x Q,. For g € L'(?,) we define §(x) = [q, oi(x — y) g(¥) dy, where w,(x) =
= K(h) exp (—|x|*/(h* — |x|?)) for |x| < h, w,(x) = 0 for |x| = h and K(h) is such
that [g~ w,(x) dx = 1. If we write ~ over a function g which is originally defined
in Q only, we assume automatically that g = 0 outside Q. The tilde above a function
depending on (z, x) € R"*! means the regularization only in the space variable x.
One easily verifies the following results (see e.g. [11])

(1.8) [onfg dx = [q,fG dx for every f,geL(Q,),
(19)  max|D(9)] £ i oo ‘

(D* (k = 0,1, ...) represents any differentiation of the k-th order with respect to the
space variables, ¢, > 0 depends on h, D).

The purpose of our paper is to prove the global in time existence of weak solutions
to the problem (1.1)—(1.7). In spite of great efforts, no general global results con-
cerning the systems of Navier-Stokes equations for compressible fluid in more
space dimensions have been obtained up to now. Global theorems were proved
only in the case of “sufficiently small” initial conditions and external forces (see
e.g.[6],[7]. [15], [17]). An interesting attempt without these assumptions is Padula’s
paper [13] concerned with the two dimensional isothermal viscous compressible
flow. However, her approach and results are not quite correct. For another approach
to the global existence problems see e.g. [9], [10].

We use the current notation I7(Q), P?(Q, RY), I7(Qy), I’(Qr, RY), W3(Q),
W@, RY), (1 W(Q), (1 W (@, RY). €(@). ©(@), RY), €2, ¢'(r
RY), (I, ¢'(Q)) for functional spaces (see e.g. [3]). A norm in a Banach space
X is denoted by || [x.

Let us recall the very useful Lions lemma (see e.g. [5], [16]).

Lemma 1.1. Let | < p; < + o0, let B; (i = 0, 1) be reflexive Banach spaces and B
Banach space such that B, = = B < B, (= < denotes compact imbedding). Then
the Banach space "

X ={f;fel(0,T),By), f.el0,T),B,)}
satisfies
X c<= (0, T), B).
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II. FORMULATION OF THE PROBLEM

We define
(2.1) T ( ) = {(00> o, 00) 5 00€W**Q,), 0,26>0 in Q,,
Wy *(2,RY), 0,eI}2,),0,>0 ae.in @},
(2.2) .9’,%(1) = {(0,u, 0); 0 € L*((0, 1), W>2*(Q,)), 0., € L*((0, t), W"*(2,)),
0=6; >0ae.in Q,,, uel¥(0,1), W»}Q, R") n Wy *(, RY)), u, e
e I*(Q,, RY), 0 € L*((0, t), Ww"2(Q,) n L*((0, 1), [*(2,)), 0 = 0 a.e.
in Q).
Definition 2.1. Let 6 > 0, T > 0, (¢, tg, 0o) € 7 (5). By the weak solution to the
problem (1.1)—(1.7) we call the triplet (o, u, 0) € & (T) such that

i) equations (1.1) ((1.2)) are fulfilled a.e. in Qr , (in Qr, respectively),
ii) (1.4), (1.5) hold,
iv) p(0) = 00, u(0) = u,,
iii) the equation (1.3) is fulfilled in the weak sense, i.e.
(2.3) — ¢y for., @00 dx dt — [o, 040, n(0) dx +
+ forn (A0 — cpoiif) n ;dx dt = o, , (¥ — piF;, ;) n dx dt
for every ne I(I, W"3(@,)), n., € 2(Qr,), n(T) = 0.
Remark 2.1 Sometimes it is convenient to replace (2.3) by
(2.4) — ¢y Jou . 000 dx dt = ¢y g, 0000 n(0) dx + [q,00n dx|,=, —
— Joun (W — pit; ) ndxdt + 4, , (A0 — cpoiif) n;dxdt = 0

forevery n e (I, W"(Q,)), n.,€ I*(Qr ) and fora.e. t' €.
Our aim is to prove the following main theorem.

Theorem 2.1. Let 8, T > 0, (0o, uo, 05) € 7 o(8). Then the initial boundary value
problem (1.1)—(1.7) has at least one weak solution (¢, u, 0) € ;5 (T) for some §; > 0.

III. CONSTRUCTION OF APPROXIMATIONS

Remark 3.1. We shall use a modified Galerkin method with a special basis. Let
the operator &: W>2(Q, RY)n W, *(Q, RY) —» [*(Q, R") be given by (#v); = v, ;; +

+ 4v;,; (v=(vy,...,vy)). One constructs an orthogonal basis {w*};5 (W=
= (wh, ..., wy)) in LZ(Q R™) by solving the eigenvalue problem
(3.1) AW =t (k= 12,..;0< A <1, £..).
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Solutions of (3.1) exist due to the compactness of «/~' and the selfadjointness
of o/ in I*(Q, R") (see e.g. [5]). Due to the regularity of elliptic systems w*e
€ ¢°(Q, R"), see [1]. Let us denote by P, (n = 1, 2, ...) the orthogonal projection
of I*(Q, RY) onto the n-dimensional subspace spanned by {w', ..., w"}. Due to (3.1),
we have

(3.2) APw = P.ofw
for every we W 2(Q, R¥) n W, ?(Q, RY).

Remark 3.2. Welook for a sequence of approximative solutions {(o", u", 0")}, 5 ,

"€ € (Qr) 0 [0, T), €*(Q,)), u" = pw', where I' = (yy,....,7,)€
k=1
e ¢'([0, T]. R") and {w"}; 7 is the basis described in Remark 3.1, 0" € '(Qr,) O
n €°([0, T], €*(Q,)), which satisfy the following system:
(3.3) ¢+ (") ;=0 in Qr,,
(3.4) fo(0"ut)  whdx + ((u", w)) = [q0"uldiw; dx +
+ [ P(e", 0") W} ;dx in I,

P

where ((u, w)) = p fou; jw; ;dx + du [qu; w; ; dx,
(3.3) c(0"0") . + cp(Q"dj0") ; — A0";; = —R@"0"W; ; + Y(u") in Qr,,
(3.6) 0"(0) = of, where 05 e€™(Q,), o5 =3 in Q. of— 0
strongly in- W22(Q,) ;5 740) = [ uewi dx; 0'(0) = 05,
where 0 € €%(Q,), ? 5 =0 on 0Q,, 05— 0,
ov

strongly in  I*(Q,) .

Lemma 3.1. The system (3.3)—(3.6) has at least one solution ¢" € €' (Qr,) O
N1, 6%(2). 0" > 0 in Qr, 0"€ € (Qpy) 0 €°(1,6%Q,), 020 in 0y, I'e
(6 ( Rn)
Proof. Let v =Y 5w, T =(J,....7,) € €%, R"), [(0)=(y,(0),...,7.0)).
k=1

We are looking for ¢" which satisfies the initial condition ¢"(0) = ¢j and (3.3) with
u" = v. Forg" > 0, (3.3)is equivalent to

(3.7) (1fa") &%, + (1)o") o5 = — i

Let X,(t) = 8¢, x"(¢)), x"(0) = y € 2,(1, 2, 3,). For every te I, y —» x"(¢) is a diffeo-
morphism of @, onto @,. From (3.7) one gets

(3-8) 0"(t, x) = 05(») exp (= [§ #; (v, x"(r)) dr), where x = x"(1),
y = x"(0).
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Thus for every I' e €°(I, R"), | I |l4ocz,gm < 04, 64 > 0 we have

(3.9) max ¢"(t, x) = 7, (o, > 0)

T,h

According to Misohata [8], 0" € #'(Qr,) N €°(I, ¢*(©Q,) and the following estimates
hold:

(3.10) lo"[1@rmneod w2y S 0303 > 0)

provided ||| 4oz gmy < 074

(3.11) lot = e2flvi@rm = o3I = I?[goummy

provided |[IM|goq rn) < 0y (1 =1,2) (91 and o are the solutlons to (3.3) with the
initial condition gf and with u" = v! = Z 7iwkand 0?2 = Z Jaw", respectively.)

For such ¢" and u" = v one solves the parabolic equatlon (3.5) with the initial
condition 0"(0) = 03 and boundary condition 8/0v(0") = 0 on I x 0Q,. Because
of the smoothness of its coefficients (see the definition of v and (3.9), (3.10) above)
one obtains that 6" e (0, ) N €°(I, ¢*(Q,)). The following estimates hold:

(312) ”0"”(6l(gr,h)n%O(i’ggZ(ﬁh)) < oy (0‘4 > 0)
provided |[I'[| oz gy < 0, and
(3.13) 16 = 03] s10ri = 05| = T eoipny» 05> 0

prov1ded | " GO = ax(l =1,2). (9" and 67 are the solutions to (3.5) correspond-

ing to 0" = ¢} or 05 and u" = v' or v*, respectively.) For details see [2] [4].
For ¢", 0" computed above we solve the problem

(3.14) Ja (e"uf) , whdx + ((u", w¥)) = [q 0"ultwh; dx + [q plo", 0") wh ; dx
with the initial condition 7,(0) = [uewidx, k=1,..,n

(i) We multiply (3.14), by 7, add the obtained equalities and integrate over (0, ¢),
te(0, T].

(ii) We multiply (3.3) (where u" = v) by 3|u"|* and integrate over Qg ,. After
adding (i), (ii) we get

(19) & falel? ax], + Jo (u,a)) de =
+ [o fo ple", 0") @} ; dx dr.

From (3.15), (3.9), (3.10), (3.12) we get

(3.16) [Tl eotan = 06 (06 > 0)

Np=

provided |[I[|4oq gmy < 0.
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From (3.14), (3.9), (3.10), (3.12), (3.16) we obtain
(3.17) ITle1a,mmy < 07 (07 > 0)

provided ||| gocz rn) < 0.
Since det (o 0"Wiw} dx) > 0, one gest from (3.14) the system of ordinary differen-
tial equations

(3.18) =&, I, ', ro) =ry, = (y,0),...,7(0),

where I = (VI{):=1, Vi = fn ﬁ(Q”> 0’") W'},j dx, ' = (V{kl k=15 #lf = jn Q"wiwi dx,
' = (YD ai=1s Viar = [ 0"Ww? W} dx. The explicit form of & can be found

from the following system of linear equations for I':
(3.19) Vidr = Vet dva — (W W) 3 + 9 (k=1,...n).

The equation (3.18) defines the operator 4: ¢°(I, R") - €°(I, R") such that I' =
= %[T'). Foreveryt,t; suchthat0 < t; <t < T we have:

r(t)y—r(t) = [, #dc.

Using the estimates (3.9), (3.10), (3.11), (3.12), (3.13), (3.17) and taking into account
the form of & (see (3.19)), we derive that for every g €(0, +o0) there exists 7 e
€ (0, T such that

(3.20) [T = 1) 4oqo,.rmy <
nrl - FZ”%"([O,?],R") = U9IF1 - FZ”%"’([O,?],R")

(0o > 0) provided the norms |[I' — I'(0)]lgoz,xmy and I — I'(0)[gor.rm (I = 1,2)
are less or equal to g. TI'* corresponds to the solution of (3.18) with I' = I".

The operator %: %°([0, 7], R") - %°([0, ], R") maps the sphere X (q) = {I'e
e °([0, 7], R"), |[I' — I'(0)]40¢0.0.rm = 4} into itself. It is compact and continuous
(see (3.17),(3.20)). One obtains a fixed point of % using the Schauder theorem. From
(3.18) we get that (d/dt) |I'* — I'*| < ag(q) |[I'* — I'?|, hence the fixed point I is
unique in ' (q). Let

A" = {i, the mapping F_I[o,i] — I'o 7 has at least one fixed point in at least one

sphere #'(q), q €(0, +o0)}

and put & = sup A". It is clear that @ > 0. If @ < T we get a contradiction with
(3.15). Hence & = T.

Let us prove that 0" = 0. Put 8" = 0" exp (—At), 4 > 0. Due to (3.5), 0" satisfies
the equation

(3.21) Q"0 + Acy@"®" + c," 0" = —R@"0"il} ; + exp (—At) ¥(u") +
+ 207 .

We suppose that min 0" = 8"(t,, x,) = 0. Thus for (t,, x,) we have
Or,n

(3.22) 0" (o, x0) = 0, 0%,(to, x0) 2 0, 0"(to,x0) 0.
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From (3.21), (3.22) we get the inequality
(3.23) 0"0"(cyA + R} ;) (to, x0) 2 0.

If A is sufficiently great then (cyA4 + R} ;) (to, Xo) > 0. Thus 6"(¢,, x,) = 0.

IV. ESTIMATES OF APPROXIMATIONS

(i) We multiply (3.4), by y, (k = 1, ..., n), add these equations and integrate over
(0,1), te(0, T].
(ii) We multiply (3.3) by #|u"|* and integrate over Q.

(iii) We integrate (3.5) over Q,,. We add equalities (i), (ii), (iii). ~After some
computation, we derive the estimate

(4.1) 1 [o o"[u")? dx|; + ¢y fq, €"0" dx|, < % [q 05|ub|? dx + ¢y [q, 0505 dx <
<K, (K;>0, up=)Y y(0)u).
k=1

Adding the results of (i) and (ii), we obtain

(4.2) fo (u", u")) dv < [§ fq, ple" 07) uf; dx dt + 4 [ ogfug|* dx <
< (207" [p(e", 0 Zacor s + $1 ki Eaom + 3 To 0olu]? dx .

Using (1.9) we get

@3)  [wlegmerm < K (Kp > 0).

(iv) We apply to (3.3) the differentiation D’ (j = 0, 1,2) and multiply it by D’g".
(v) We add all equalities obtained in (iv) and integrate over Q, . Using the Green
formula, (1.9) and the Gronwall lemma, we can derive

(4.4) le"leeu w2z, = K5 (Ky > 0).

From (3.3), (1.9), (4.4) we obtain

(4.5) le 2 mwrzcan, = Ko (Ky > 0).

Using the Sobolev imbedding theorem, we arrive at
(4.6) le"lz=corm = Ks (Ks > 0).

Due to (3.8), (1.9), (4.3) there exists §; > 0 such that
(4.7) 0" >34, ae.in Qr,.

From (4.1), (4.7) one derives

(4.8) [u"]Locr r20.rm)) < Ko (Kg > 0).
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This estimate together with (3.3), (4.4), (1.9) gives
(4.9) Lo = Ky (K; > 0).

{(vi) We multiply (3.4), by 7, and integrate over (0,1); k = 1,...,n
(vii) We add the equations (vi),.
After some computation, we get
(4.10) [6 Jo o"|u"|? dx dr + ((u"(2), u"(2))) =
= —[o (o (0"du} jui, + P (0", 0") ui,) dx dt + ((ug, ug)) .

Using the Holder inequality and (1.9), we can verify that the following estimates
hold (indexes are omitted):

(4.11) fo fqo"@"Du"", dx dt < KBHQ [],,,\Q(Qt o X
X [l w00, 220.0% [ DU | L2goermy [T 20ern)  (Ks > 0)
(4.12) §o fo DB(e", 0") u”, dx dv < Kg[0"0"] Lo(co,00.L2c2m [# 200 -

Applying the estimates (4.11), (4.12) to the r.h.s. of (4.10), using the Young inequality
and the estimates (4.1), (4.3), (4.6), (4.8), we obtain

(413) Hu’.,Y[]LZ(QT~RN) é K9 s KQ >0,
(414) ”ll"”L(x,([ W1.2(Q RNY) é Kg .

We multiply (3.4), by A7, and integrate over (0 t). We add the obtained equalities
(k=1,...,n). We get

(4.15) 1| 2u"| 200)> = [6 [o B (0", 07) (Zu™); dx dt +
+ [6 fo (0", + o"ifju} ) (u™); dx dr .
The Holder inequality and (1.9) give the estimates of all terms on the r.h.s. of (4.15)
(indexes are omitted):
(4.16) [o Jo DB(c", 0") Au" dx dt < Ko[[@"0"|[eo.,00,L1c0m) X
x [t i20,mm) » Kio >0,
(4.17) [6 fo 0" Du"szu" dx dt < Kol0"|| =00 X
X ] poqr rcarny [P 2oy |74 [Laomm
(4.18) [6 [o o"u"wetu" dx dt £ K[| =00

l“?r”u((z,,zz”) {]%’u"Hu@,.m) .

Applying the estimates (4.16)—(4.18) to the r.h.s. of (4.15), using the Young in-
equality and (4.3), (4.6), (4.8), (4.13), one gets

(4}.9) ll(”&{u"”LZ(QT’RN))Z é Kll + ‘%‘ﬂ(”%unl,Lz(QT,Rlv))z (Kll > O) .
Thus
(4.20) (lu"| 20 mm)* < (2]1) Ky -

424



Using the operator P, (see Remark 3.1), we can rewrite (3.4) into the form
(@2) et = But) + PA@T),) + PAVEE ).

The right hand side of (4.21) is bounded in L*(Qy, R"). Thus, according to classical
Agmon, Douglis, Nirenberg results for elliptic systems (see [1]),

(422) ”un“LZ(IV”/Z,Z(Q‘RN)) g K12 ) K12 > 0 .

Let us suppose that 0, € W' ?(Q,) and the sequence 05 (see (3.6)) satisfies 05 — 0,

strongly in W'%(Q,). We multiply (3.5) by 0" and integrate over Q,,. After some
computation we get

(4.23) Iy [q, 0"(0M)? dx|, + A f§ fq, 070" dx dt =
= — {4 [q, RO"®; (0" dx dt + [§ [q, Y(u") 6" dx dT +
+ ey fo, 06(65)* dx .

The following estimates hold (indexes are omitted):

(4.24) §6 fo, @"DE"(0"? dx dr < K3]|0"|Legem *
X [u"| Lec0.00.222,8m)) ugnliwt,h} )
(4.25) §6 Ja P(u") 0" dx dv < K5[[u"||Leo,0. w120y, %

X Ul L0,y w2 2c2umm) (07|20, 1 202y -

If we use the estimates (4.24), (4.25) on the r.h.s. of (4.23), take into account (4.6),
(4.9), (4.7), (4.8), (4.14), (4.22) and apply the Young inequality, we obtain

(4.26) fa. (07 dx|, + [ [q, 070" dx dt < Ky4(1 + [§ [q, (07)* dx d7),
K,,>0.

Using the Gronwall inequality, we can derive
(4.27) (0"t r2cmy < Kis» Kys >0,
(4.28) 10" |2t w200y = Kis -

Due to (4.4) and (4.29) we have

(4.29) l0"0" |2t wr2amy < Ko, Kig > 0.

One verifies that the expressions (¢"u}8"), o' ;6", ¥(u"), 6";; are bounded in
(I, W~ *(%Q,)). We can see from (3.5) that

(4'30) ”(Q"B")J”UU,W‘"Z(Qh)) £K,;, K{7>0.
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V. PROOF OF THE MAIN THEOREM

Lemma 5.1. Let {(o", u", 0")},=} be a sequence of solutions to the problem (3.3)—

(3.6). Then there exists (o, u, 0) and a subsequence (denoted {(o", u", 6")}, = again)
such that

i) o"—> o stronglyin I, W"%Q,)), 1l<p<+w, g=6 >0
ae.in Qpy;

i) u" > u strongly in LXI, W"*(Q, R"));

iii) 0" >0, 0,0, weaklyin IXQr,), ¢"0"— o0 strongly in
IXQry), 620 aein Qp,;

iv) o', — o, weaklyin I*(Qr,);

v) o"u", — ou, weakly in I*(Qp, RY);

vi) o"#" — it strongly in I*(Qp,, RV);

vii) I§ fo @@} jw,dx dt — {3 [oofiu; w; dx dt for every '

we%y(Qr, RY);
viii) I3 fa, @"0"din ; dx dt — (§ (o4 00fim ;dx dt  for every ne€”(Qr,) ;
ix) 16 Ja, @™y n dx dt > [ [o, Y(u)n dxdt for every ne%*(0r,).
Proof. i) In order to show the strong convergence, we use the estimates (4.4),
(4.9) and apply the Lions lemma (see Lemma 1.1) with B, = W>%(Q,), B = W"?(Q,),

B, = W"¥Q,), 1 < p; < 4+ (I =0, 1). Due to (4.7) we have ¢ = &, a.c. in Qg
for some §, > 0.

i) We apply the Lions lemma with B, = WZ’Z(Q, R"), B = W"*Q,R"), B, =
. LZ(Q, RN), Do = Py = 2.

iif) Weak convergence follows directly from (4.28). According to the Lions lemma
0"0" — a strongly in I*(Qr,) (see (4.29), (4.30)). We can verify that ¢"0" — ¢f,
in the sense of distributions, hence a = g0, § = 0 a.e. in Q4 because of 0" = 0
in Qg

iv) follows directly from (4.9).

v) Due to (4.13), u", — u , weakly in I*(Q, R"). This fact and i) give the desired
result,

vi) Using the Holder inequality and (1.8), we get

le"@* = ell|t2or, = 0" = 0llz2igrm |7 |Ecorprr) +

+ ”B"HLZ(QT,».,RN) ”“" - “”Lz(QT,RN): where  b" = o*(u" + u).
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The r.h.s. tends to zero due to i), ii).
vii) follows directly from ii), vi).
viii) We use (1.8) and the Green formula. We obtain
o Jou (ple" 0) @ — plo, 0) ;) n,; dx dv =
= (o [, R(0"0" — @0) difn ; dx dt + (G [q, P(o, 0) (u} — u;)n ;dx dr.
The r.h.s. tends to zero due to ii), iii).
ix) holds due to ii), because Du" and Du = O a.e.in Q7 , — Q.

Now we can turn our attention to the proof of the main theorem. Applying the
results of Lemma 5.1 and considering that n - + oo in (3.3)—(3.6), we can show
that

(5.1) [0 [an (0.8 — 0@l ;)dx dt =0 forevery (e%3(Qru),
(5:2) I8 fan (oui, + ofiju; ; + B o, 0)) w; dx dt +

+ [6((u, w))dxdt = 0 for every we%5(Qr, RY),
(5.3) — ¢y fop, 000 dx dt — ¢, [, 000, n(0) dx +

+ forn (A0 — cpoiif)n ;dx dt = [o, (¥ — pil; ;) ndxdt
for every ne %*(Qr,) suchthat »(T)=0.
Due to the density argument, one derives from (5.1), (5.2) that (1.1), (1.2) are

satisfied a.e. in Qr, and (2.3) holds. It is clear that [, 0"0" dx|, > [q, 00y dx|,
for a.e. t eI and for every n = (I, W"*(Q,)), n,, ¢ L*(Qr ), hence (2.4) holds, too.

Remark 5.1 One can easily extend our results to the case of a nonzero external
force F e L*(Qp, R") and nonzero heat sources q € L*(Qr ).

Remark 5.2 If 9o € W**(@,) (k = 2) then one obtains o e L*(I, W**(Q,)), 0., €
e L”(1, w*~1*(Q,)). This can be proved by the same method as the one used in the
derivation of (4.4), (4.5), (4.9).

VI. ENERGY AND ENTROPY ESTIMATES

We derive some estimates independent of the parameter of regularization in this
section. We start with the following lemma.

Lemma 6.1 Let {(¢", u",0")}, 27 be a sequence of solutions to (3.3)—(3.6). Let
(2.1) be satisfied and let 0, € €*(Q,), 0, > 0 in Q,; put 0y = 0,. Then

i) 0" > 0in Q.

ii) there exists a subsequence (denoted {(o", u", 0")},= again) such that

n=1
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ii), 1/0" - 110 strongly in IP(Q7,), 1 <p< +o;

ii), Jon Q"'ln 0"] dx - [, Qlln 0' dx forae. tel;
ii)s 15 fa (P(@))0") dx dz — {5 [o, (P(w)[0) dx dz, te(0, T];
i), - (In0") ; > (In 0); weakly in LYQr,).

Proof. i) Due to the smoothness of ©" we can find a minimal number,0 < ¢ < T

such that min 0"(c, x) = 0. Hence 6"(t, x) > 0 in Q,,. Let us put § = In 6". From
On
(3.5) we derive

(6.1) "8, + '@ ; — A9 ;= A(1/07)? 070" + ¥(u")[0" — Ro"i]} ;
Fort < oletusputd = 3, + 3,, where

%1 _ 0 on (0,0) x 09,
vV

9,(0) = 1n 6},

CVQ”SI,I + CVQniZ;S]‘j - )\-91‘,'1' = A(I/Gn)z 0?,9“, + 'I’(u")/@"
and

3,(0) = 0, %=0 on (0,0) x 0%,,
v

¢y0"ds, + 0" #;9; ; — 295 ;i = —RQ" ;.

According to the maximum principle 3, = In 0 and 3, can be continuously extended
to Q, . This is a contradiction.

ii), We multiply (3.5) by 1/(k(6")**"), k > 0 and integrate over Q; ,. We get

(62) cv Ja, ("/(6")") dx| =1 + —,1;55 fa, (P(n)/(0") ") dx dt +

k+1
k

= }(% [a, (Ro"iZ;](67)) dx dt + ¢y [q, (ég/(gg)k) dx .

[5 [, (0%07(6")*%) dx dt =

From (6.2) we obtain
“(gn)—\/k”Lw(l.Lz(Q;,)) =Ky, Ki9>0.

In particular 1/0" is bounded in I?(Qy,) for p > 1. Due to Lemma 5.1, i) and iii)
6" > 0 a.e. in Qr , hence 1/0" — 1/0 strongly in I?(Qy ;).

ii), In 0°(t) > In 0(t) and o"(t) - o(t) a.e. in Q, for ae. tel. o'(t)|In0"(r)| is
bounded in I*(@,) for a.e. t 1. Thus 0"(¢) |In 0"()| — o(¢) |In 6(r)| weakly in *(2Q,)
fora.e.tel.
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ii); holds due to ii), and part ii) of Lemma 5.1.
ii), is consequence of ii); and iii) in Lemma 5.1.

We prove the following theorem

Theorem 6.1 Let (o, uy, 0,) be a weak solution to the system (1.1)—(1.7) corre-
sponding to the parameter h > 0. Let (2.1) be satisfied and let 0, € €*(Q,), 0, > 0
in Q,. Then it holds

(6-3) fg,, Qn dx'r = jg,. 0o dx,
(6-4) 1 fﬂ th“h[z dxlt + ¢y jn,, 010, dx|r <3 IQ Qol“ol2 dx + ¢y J.Q;. 0000 dx ,
(6.5) R (o, ouln 04| dx|, + [§ [q, (¥(u,)[0,) dx dt +

© ALY fou (In0)1(In 0,) s dx dt < & [0 goluol? dx + 2 X m(@y) -
e
— R IQ,, 0o In gy dx — ¢y jgh QoIn 0y dx + ¢y j!)h 2000 dx ,

(6~6) Cy Im Qh'ln 9h| dxlt <

o |

m(2;) + R [q, 00 In 0o dx +

+ 2¢y [, 0080 dX + [g @o|uo|* dx — ¢y [q, 0o In 0, dx dt  for a.e.
tel.

Proof. The equalities (6.3), (6.4) follow directly from (3.3), (4.1) by passing to the
limit n > + 0. Due to i)in Lemma 6.1, we can multiply (3.5) by 1/6". After integrat-
ing over Q, ;, we get

(6.7) ¢y o, 0" In 0" dx|, = [§ o, (¥(u")/0") dx dt +
+ 2[5 fo,(In0") ;(In 0") ;dx dt — [§ [q, Ro"d}; dx dt +
+ ¢y fo, 06 In 65 dx .
From (3.3) one gets
(6.8) = [6 fa, Re"#; ;dx dt = [q, Ro"In ¢" dx|, — [, Re§ In o dx|, .
Putting (6.8) into (6.7), we get
(6.9) ¢y fo, 0" In 0" dx|, = [q, R"In ¢" dx|, — [, Rof In ¢f dx +
+ [6 fa, (P("))0") dx dt + A [§ [q, (In6") ; (In 6") ; dx dt +
+ ¢y [q, 06 In 65 dx .
We know that In0 <6, glng = o(Ing)* — ¢(Ing)”, In6 = (In6)" — (In 6)~

(a*, a™ are the positive and negative parts of a, respectively) and Ro(In ¢)” < Rle.
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Using these facts and (4.1) we arrive at

(6.10) R (g, 0"[In @"| dx|, + [§ o, (¥ (u")[0") dx dT +
+ 4 [ o, (In 6") ; (In 0") ; dx d= = 3 [q 0b|up|? dx + 2 (Rle) m(2,) +
+ R g, 00 In g5 dx — ¢y [q, 06 In 05 dx + ¢y [q, 0605 dx,

(6.11) ¢y fon 0"[In 0" dx|, < (R/e) m(Q,) + R [, 0§ In 0§ dx +
+ 2¢p [, 0006 dx + [g 05|ut|” dx — ¢y fq, 0o In 0 dx dt .

Due to (6.10), (In 0") ; — a weakly in I*(Qy,) (at least for a chosen subsequence).
According to Lemma 6.1 iiy), a = (In 0) ;, hence due to the Fatou lemma

(6.12) 13T+i2f ”(1“ 9"),:'”L2(Qr,h> = |(In 0),1'“L2(QT,».) .

We use Lemma 5.1, Lemma 6.1 and (6.12). We can pass to the limit in (6.10), (6.11)
and we get (6.5), (6.6). Thus the theorem is proved.
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Souhrn

SLABA RESITELNOST REGULARIZOVANEHO SYSTEMU ROVNIC
PRO POHYB VAZKE STLACITELNE TEKUTINY

Jikf NEUSTUPA, ANTONIN NOVOTNY

V praci je navrZena fyzikaln& prijatelnd regularizace uplného systému Navier-Stokesovych
rovnic pro vazkou stlalitelnou tepeln& vodivou tekutinu. Je dokazana véta o existenci slabych

feSeni podatedni a okrajové ulohy pro regularizovany systém. Jsou odvozeny energetické odhady
nezavislé na parametru regularizace.
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