Previous |  Up |  Next

Article

Keywords:
finite elements; linear interpolation; maximum angle condition; Zlámal’s condition
Summary:
We consider triangulations formed by triangular elements. For the standard linear interpolation operator $\pi__h$ we prove the interpolation order to be $\left\|v-{\pi__h} v\right\|_{1,p}\leq Ch\left|v\right|_{2,p}$ for $p>1$ provided the corresponding family of triangulations is only semiregular. In such a case the well-known Zlámal's condition upon the minimum angle need not be satisfied.
References:
[1] I. Babuška A. K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214-226. DOI 10.1137/0713021 | MR 0455462
[2] R. E. Barnhill J. A. Gregory: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1976), 215-229. MR 0458000
[3] P. G. Ciarlet: The finite element method for elliptic problems. North-Holland, Amsterdam, New York, Oxford, 1978. MR 0520174 | Zbl 0383.65058
[4] J. A. Gregory: Error bounds for linear interpolation on triangles. (in Proc. MAFELAP II, ed. J. R. Whiteman). Academic Press, London, 1976, 163-170. MR 0458795
[5] P. Jamet: Estimations d'erreur pour des éléments finis droits presque dégénérés. RAIRO Anal. Numér. 10 (1976), 43-60. MR 0455282
[6] P. Jamet: Estimations de l'erreur d'interpolation dans un domaine variable et applications aux éléments finis quadrilatéraux dégénérés. Méthodes Numériques en Mathématiques Appliquées, Presses de l'Université de Montreal, 55-100. MR 0445863
[7] M. Křížek: On semiregular families of decompositions of a polyhedron into tetrahedra and linear interpolation. (in Proc. of the 6th Conf. Mathematical Methods in Engineering). ŠKODA, Plzeň, 1991, 269-274.
[8] M. Křížek P. Neittaanmäki: Finite element approximation of variational problems and applications. Pitman Monographs and Surveys in Pure and Applied Mathematics vol. 50, Longman Scientific & Technical, Harlow, 1990. MR 1066462
[9] J. Nečas: Les rnéthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. MR 0227584
[10] G. Strang G. J. Fix: An analysis of the finite element method. Prentice-Hall, INC., New Jersey, London, 1973. MR 0443377
[11] J. L. Synge: The hypercircle in mathematical physics. Cambridge University Press, Cambridge, 1957. MR 0097605 | Zbl 0079.13802
[12] A. Ženíšek: The convergence of the finite element method for boundary value problems of a system of elliptic equations. Apl. Mat. 14 (1969), 355- 377. MR 0245978
[13] M. Zlámal: On the finite element method. Numer. Math. 12 (1968), 394-409. DOI 10.1007/BF02161362 | MR 0243753
Partner of
EuDML logo