[1] I. Babuška A. K. Aziz:
On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214-226.
DOI 10.1137/0713021 |
MR 0455462
[2] R. E. Barnhill J. A. Gregory:
Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1976), 215-229.
MR 0458000
[3] P. G. Ciarlet:
The finite element method for elliptic problems. North-Holland, Amsterdam, New York, Oxford, 1978.
MR 0520174 |
Zbl 0383.65058
[4] J. A. Gregory:
Error bounds for linear interpolation on triangles. (in Proc. MAFELAP II, ed. J. R. Whiteman). Academic Press, London, 1976, 163-170.
MR 0458795
[5] P. Jamet:
Estimations d'erreur pour des éléments finis droits presque dégénérés. RAIRO Anal. Numér. 10 (1976), 43-60.
MR 0455282
[6] P. Jamet:
Estimations de l'erreur d'interpolation dans un domaine variable et applications aux éléments finis quadrilatéraux dégénérés. Méthodes Numériques en Mathématiques Appliquées, Presses de l'Université de Montreal, 55-100.
MR 0445863
[7] M. Křížek: On semiregular families of decompositions of a polyhedron into tetrahedra and linear interpolation. (in Proc. of the 6th Conf. Mathematical Methods in Engineering). ŠKODA, Plzeň, 1991, 269-274.
[8] M. Křížek P. Neittaanmäki:
Finite element approximation of variational problems and applications. Pitman Monographs and Surveys in Pure and Applied Mathematics vol. 50, Longman Scientific & Technical, Harlow, 1990.
MR 1066462
[9] J. Nečas:
Les rnéthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
MR 0227584
[10] G. Strang G. J. Fix:
An analysis of the finite element method. Prentice-Hall, INC., New Jersey, London, 1973.
MR 0443377
[11] J. L. Synge:
The hypercircle in mathematical physics. Cambridge University Press, Cambridge, 1957.
MR 0097605 |
Zbl 0079.13802
[12] A. Ženíšek:
The convergence of the finite element method for boundary value problems of a system of elliptic equations. Apl. Mat. 14 (1969), 355- 377.
MR 0245978