Previous |  Up |  Next

Article

Keywords:
Newton method; difference equation; series expansion; fixed point; discrete dynamical system; Julia set; Cayley’s problem; recurrence relations; analytic solution
Summary:
Newton's method for computation of a square root yields a difference equation which can be solved using the hyperbolic cotangent function. For the computation of the third root Newton's sequence presents a harder problem, which already Cayley was trying to solve. In the present paper two mutually inverse functions are defined in order to solve the difference equation, instead of the hyperbolic cotangent and its inverse. Several coefficients in the expansion around the fixed points are obtained, and the expansions are glued together in the region of overlapping.
References:
[1] A. Cayley: The Newton-Fourier imaginary problem. Amer. J. Math. II, 97 (1879).
[2] P. Petek: A Nonconverging Newton Sequence. Math. Magazine 56, no. 1, 43 - 45 (1983). DOI 10.1080/0025570X.1983.11977016 | MR 0692174 | Zbl 0505.10006
[3] G. Julia: Sur l'iteration des fonctions rationnelles. Journal de Math. Pure et Appl. 8, 47-245 (1918).
[4] P. Fatou: Sur les equations fonctionelles. Bull. Soc. Math. France, 47: 161 - 271, 48: 33 - 94, 208-314 (1919). DOI 10.24033/bsmf.998 | MR 1504787
[5] H. O. Peitgen D. Saupe F. Haeseler: Cayley's Problem and Julia Sets. Math. Intelligencer 6: 11-20 (1984). DOI 10.1007/BF03024150 | MR 0738904
[6] P. Blanchard: Complex Analytic Dynamics on the Riemann Sphere. Bull. Amer. Math. Soc. 11, 85-141 (1984). DOI 10.1090/S0273-0979-1984-15240-6 | MR 0741725 | Zbl 0558.58017
[7] C. L. Siegel: Iteration of Analytic Functions. Annals of Mathematics 43, 607-612 (1942). DOI 10.2307/1968952 | MR 0007044 | Zbl 0061.14904
[8] H. O. Peitgen P. H. Richter: The Beauty of Fractals. Springer-Verlag, Berlin, Heidelberg 1986. MR 0852695
Partner of
EuDML logo