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CAYLEY’S PROBLEM

PETER PETEK
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Summary. Newton’s method for computation of a square root yields a difference equation
which can be solved using the hyperbolic cotangent function. For the computation of the third
root Newton’s sequence presents a harder problem, which already Cayley was trying to solve.
In the present paper two mutually inverse functions are defined in order to solve the difference
equation, instead of the hyperbolic cotangent and its inverse. Several coefficients in the expansion
around the fixed points are obtained, and the expansions are glued together in the region of
overlapping.
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1. CAYLEY’S PROBLEM. FUNCTIONAL EQUATIONS

Already in 1879 Cayley (see [1]) considered the Newton method for solving
polynomial equations in the complex plane, asking what would be the basin A4((,)
of attraction of a certain zero of the polynomial p(z). Newton’s sequence takes the
form of a difference equation

(1) Zy+1 = Zp — p(z,,)/p'(z,,) .

Every quadratic equation can be reduced by a linear transformation to the simplest
case z2 — 1 = 0, and the corresponding sequence

(2) Zyrr = (z, + 2, )2
can be expressed analytically using the hyperbolic cotangent and its inverse
(3) z, = cth(2" Ar cth z,) .

The complex plane is divided into two basins of attraction along the imaginary
axis, while the imaginary axis in this case is the Julia set. The dynamics on it is
chaotic and also rather interesting [2].
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What is now known as Cayley’s problem arises from Newton’s sequence of the
specific cubic equation z* — 1 = 0. The difference equation is now

4 Zyr1 = (223 + 1)[3z] .

Cayley tried in vain to find an analytic solution similar to (3) or to detect the basins
of attraction to the three third roots of one. Julia and Fatou [3, 4] worked in a more
general setting, iterating rational functions in the complex plane, and showed some
of the properties of the singular Julia set. Computer graphic pictures [5] of the Julia
set for the specific Cayley case give some idea of the complexity of the problem.

Here we construct an analytic function f(w) to play the role of the hyperbolic
cotangent, and its inverse g(z). The two functions should therefore obey the functional
equations

() S = ) + D),
©  igl)=g (2 =),

322

where the coefficient A has been chosen appropriately. Suppose we have solutions
of (5), (6) with a given 1. Denote these solutions by g,, f;, respectively. Then to solve
(5). (6) with p instead of 1 we can take

(7) fuw) = £:w"), g.(z) = (9:(2))*, a=Inpflni.

Thus we may get a new branching point for w = g(z) = 0 or, if we put it the other
way, by choosing A properly branching can be avoided.

The equation (6) is homogeneous and linear, so its solutions form a vector space.
The solutions of course make sense only in some neighbourhoods of the fixed points
of the iterated function R(z) = (2z° + 1)/3z%. Of the four fixed points, the zeroes
of the cubic equation 1, —% + i/2 \/3 are superattractors, while infinity is a repellor.
From the series representation around a superattractor it is obvious that g must
have a logarithmic sigularity there and that it is defined uniquely up to a constant
_ factor. As for the infinity, taking the transformation z — z~! and the inverse R,
the origin z = 0 becomes an attractor of R™' with the derivative A = % and g(z)
can again be defined uniquely up to a constant factor, but here as a regular analytic
function with a simple zero. The solution space of (6) is thus one dimensional,
which in turn defines the one parameter family of solutions of (5): given one solution
f(w), f(Cw) is the family.

1I. THE FUNCTION g(2)

Equation (6) requires 1 g(z) = g(R(z)). Putting t = z~* we get
247
-1\ _ T
Ag(t™!) =g ( 3 )
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or, denoting g(t~") = g(t), we have
130) = 3RW), R() =301 + )

and R’(0) = 3, so the right A for t = 0 (z = o) is A = 3. The expansion of g(z) at
infinity gives that only every third coefficient is nonzero:

(8) g9(z) = z7M(Ag + Ajz73 + 4,278 + ...

Applying (6) we get

27N Ag + Az + A2+ L) =

2L+ 27302) (Ag + Az (L + 2732 + ).,

N Nw

which in turn produces an infinite system for the coefficients A4,:
: 3 3k — 2j
©) A=) = T =y N
: j= )

The coefficients A4, have been computed, setting 4, = 1:

-210526316 6 -0374698606 11 -0198737245
-112702810 7 0319217372 12 -0181318560
0758967224 8 0277665223 13 -0166629179
-0568261024 9 -0245425293 14 -0154080218
-0452330629 10 -0219709593 15 -0143240028

N A W N =

Does the series defined through the coefficients 4, converge? A look at the computed
values of coefficients suggests that it should converge for |z| > 1. This is actually
the case.

For ]z] > 1 there exists exactly one analytic solution of the functional equation
3 9(z) = g(3z + $z72) with lim z g(z) = 1.

zZ—>

The coefficients 4, and the resulting series give uniqueness and a construction of
the function, provided the series converges outside the unit circle. Denote by S this
outside region. Then from the three branches of R™! we can choose one so as to be
analytic on S,

R 1:S- 8.

Indeed, suppose |z| > 1 and let us try to solve the equation 3y + y~% = z with
|v] > 1. This can be done by iteration setting y, = z and y,.; = 3z — y, . This
sequence gives ]y,,] > 1 and it converges since the derivative of the iteration is
absolutely below 1.

Now, infinity is an attractor for R™', attracting all of S. So it suffices to have the
solution defined in a neighbourhood of infinity and then extended over S by the
functional equation. However, as the derivative of R™! at infinity equals %, an old

result of Schréder gives the local existence [7].
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Can we extend g(z) defined by (8) beyond the unit circle? We shall determine the
function g in a neighbourhood of the other three fixed points, the attractors 1,
-1+ i\/3. For reasons of symmetry it is sufficient to take z = 1 and develop ¢
there.

If we set z = 1 + u, then R(z) = 1 + u?*(1 + %u)/(1 + u)?. Thus it is clear that
if we take the expansion around 1, g cannot be regular with any A, but due to a result
of Béttcher [6], it must have a logarithmic singularity with 4 = 2:

1
(10) g(1+u):ln<—>+ao+a1u+a2u2+....
u
Here we have chosen the sign so as to make g positive for u > 0. The coefficients a;
are again obtained from the expansion (10) and the equation (6). First we take the
expansions

D

I (I R e W

i=0
and comparing the coefficients of the series we get

(12) 2a; = (=)' ((3) = 2)fi + ayby;—n + azby ;s + ...
Again we give 15 computed values of the coefficients a;:

1 666666667 6 -396204846 11 —-161102456
2 —-055555557 7 —-194656737 12 933372487
3 —-160493827 8 —-155483159 13 —1-22566744
4 -302469136 9 -439798587 14 -0228503829
5 —-405761317 10 —-377459402 15 3-:40248459

Bottcher’s result guarantees the convergence of the series in a neighbourhood of
z =1 (u = 0). Can we make any conclusion regarding the radius of convergence?
Certainly any point of the Julia set will be a singular point for the series, since in any
neighbourhood of such points there are preimages of z = 1, where we have the
logarithmic singularity. Thus the point nearest to 1 shall determine the radius of
convergence.

Consulting an image of the Julia set (see e.g. [5]) we find r = -6, which we can
confirm by computation. First we find a cycle of period 2 and solve the equation
R(R(z)) = z. This is an equation of degree 9, dividing out the three fixed points
leaves us with degree six, giving three cycles located symmetrically. The cycle nearest
toz=11is

1 27
13 =107 exp(i (" — Zarctg [Z1)),
B e p<<3 3 g\/5>>

(4,2 = 538608673 + -417204483 1,
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and the distance is
ro= |1 — C[ = +622046251 .

To see that this is also the radius of convergence of the series (10) we shall follow
the circles u = ¢ . ¢'?, ¢ < r and consider their images under the iteration

u— w1+ 3u)(1+u)">.

The curve obtained by iteration winds around z = 1 twice, and it may go out of the
circle ]u] = r. If we iterate once again, the curve winds 4 times, and so on. Depending
on how close to r is the initial radius ¢, we have to take the number of iterations to
push the curve inside the circle |u] = r and eventually to any neighbourhood of
z = 1. Since g can be defined in the neighbourhood, its definition can be extended
to the whole inside of the circle by the functional equation.

Denote by C,, C; and C, the insides of the circles with radius r and with centers
at the three roots of unity respectively. We have just defined the function g(z) on C,.

However, the functions g(z) defined on S and C, by (8) and (10) do not match
as they belong to different A. Nonetheless, by virtue of (7) we can make them coincide
on the intersection. Since S intersects also C, and C,, we shall take the “common
denominator” A = 3. In the intersection we have

(14) g32(2) = M(gs(2), @ =1In(3[2)[In2.

To determine M, take a small positive u, set y, = 1 + u, take the sequence y, =
= R™'(y,-1), which converges to infinity. For u small enough g, is just the logarithm,
for y, big enough, g5, is just y, '. Therefore

(15) M = nn]<h1<1)) () [ya = 71515
n— o u
Of course we have got new branching at z = 1 due to the irrational power o.
On C, and C, we can define g;,, by symmetry. Denote w = —% + (i/2) /3,
then from (8) we conclude

g(wz) = 0" yg(z)

and this serves for the definition in Cy and C,. Thus g is now defined on the union
D=SuCyuCyuC,.
Mapping the unit circle with the Cayley map R, we get the hypocycloid

. o
z = 2e! 4 e 2,

For z between this cycloid and the unit circle there is exactly one R™'(z) € S and so
g(z) can be defined by (6) We cut the inside of the cycloid symmetrically along the
radii ¢ = 0, 2n/3, 4n/3. For z between these cuts and the cycloid there is again
a unique R7'(z), lying in the neighbouring sector of the cycloid, and again the
functional equation (6) applies.
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I1I. THE FUNCTION f(w)

Since we have chosen g(z), its inverse f(w) is now defined, 4 = 3. As the initial
term of g(z) is z™', the initial term of f(w) is w™'. From the functional equation (5),
f(w) can be presented in the form

(16) S = vt o(w?). ¢(-2g t) = (00 + e

and ¢(0) = 1. Thus f can be given as a series

(17) fw) = w ' (By + Byw® + Bw® + ...).
Directly we find B, = 1, B, = 145 and the rest from the recursion
n n—i . 27
(18) Y BBB,_, (i —1)=0, p="—.
i=0 j=0 8
Again we give 15 coefficients B;:
1 210526316 6 —3-11548372 E-06 11 3-61407374 E-11
2 —-0202611793 7 329098610 E-07 12 —3-62249244 E-12
3 231665041 E-03 8§ —3-42383403 E-08 13 3:60960550 E-13

4 —2-62335983 E-04 9 3-51887806 E-09 14 —3-57853879 E-14
5 2:89320177 E-05 10 —3-58084230 E-10 15  3-53207176 E-15

From the very coefficients it is easy to conjecture, that the radius of convergence
satisfies |w®| < 10. However, we shall show that the actual number is |w?| <
< 10-8045851.

We shall start from the singular point W,, f(W,) = c. Then W, = W, and
from the equation (5) we conclude that f(W;) is zero. Further, W, = 3W, = 3W,
and f(W,) is one of the solutions of the equation 2z> + 1 = 0. We define a sequence
of real negative numbers starting with y, = 00, y, =0, y, = 2713y, =
= R™'(y,_,) where as before R™! means the solution of the equation

3+ 3907 = aea
which is absolutely above unity.

The corresponding sequence W, converges to zero and f(W,) = y,. But for W,
small enough, f(W,) = W, '. Thus we can determine W, from the limit

(19) W, = lim (3)"[y, = —2:21073166

n— oo

or compute the radius of convergence
Wi = —10-8045851 .

Actually we have obtained the radius of convergence because W, is the singularity
of f nearest to the origin, apart from w = 0, of course. If instead of the sequence y,.
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defined by R™', we take another sequence of inverses, we get other singularities. The
procedure can be like this: choose an integer k and find all the k-inverses of infinity.
There are 3*72 of them. Some of them will be outside the unit circle. Denote then
by ;. We prolong the sequence by 5, = R™'(1,-). The singularity is then analo-
gously to (19)

w = lim (§)"/n, .
For |w| < |W,| the function f(w) is defined by the series (17), while for w outside
this circle we have to apply the functional equation until we get inside.
Thus having defined the two functions f and g, we can express the solution of the
difference equation (4) in terms of them as

(20) z, = f((3)" 9(0)) -
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Souhrn

CAYLEYUV PROBLEM

PETER PETEK

Newtonova metoda pro vypocet druhé odmocniny vede na linearni diferenéni rovnici, kterou
Ize teSit v uzavieném tvaru pomoci hyperbolické kotangenty. V predloZeném &lanku se zavadgji
dvé navzajem inverzni funkce, které slouzi k témuz Gcelu v pfipadé aproximace tfeti odmocniny
a studuji se jejich vlastnosti.
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