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What is now known as Cayley's problem arises from Newton's sequence of the 
specific cubic equation z3 — 1 = 0. The difference equation is now 

(4) z„+ 1 = (2z„3 + l)/3z„2 . 

Cayley tried in vain to find an analytic solution similar to (3) or to detect the basins 
of attraction to the three third roots of one. Julia and Fatou [3, 4] worked in a more 
general setting, iterating rational functions in the complex plane, and showed some 
of the properties of the singular Julia set. Computer graphic pictures [5] of the Julia 
set for the specific Cayley case give some idea of the complexity of the problem. 

Here we construct an analytic function f(w) to play the role of the hyperbolic 
cotangent, and its inverse g(z). The two functions should therefore obey the functional 
equations 

(5) f(Xw) - ( 2 / » + l ) / 3 / » , 

W "M-'fl.r1)' 
where the coefficient X has been chosen appropriately. Suppose we have solutions 
of (5), (6) with a given X. Denote these solutions by gA,fA, respectively. Then to solve 
(5), (6) with fi instead of X we can take 

(7) j»=L(w1/a), g,(z) = (g,(z))\ « = In Ai/ln A . 

Thus we may get a new branching point for w = g(z) = 0 or, if we put it the other 
way, by choosing X properly branching can be avoided. 

The equation (6) is homogeneous and linear, so its solutions form a vector space. 
The solutions of course make sense only in some neighbourhoods of the fixed points 
of the iterated function R(z) = (2z3 + l)/3z2. Of the four fixed points, the zeroes 
of the cubic equation 1, —\ + i/2 ^ 3 are superattractors, while infinity is a repellor. 
From the series representation around a superattractor it is obvious that g must 
have a logarithmic sigularity there and that it is defined uniquely up to a constant 
factor. As for the infinity, taking the transformation z -> z"1 and the inverse R~1, 
the origin z = 0 becomes an attractor of R"1 with the derivative X = f and g(z) 
can again be defined uniquely up to a constant factor, but here as a regular analytic 
function with a simple zero. The solution space of (6) is thus one dimensional, 
which in turn defines the one parameter family of solutions of (5): given one solution 
f(w),f(Cw) is the family. 

II. THE FUNCTION g(z) 

Equation (6) requires X g(z) = g(R(z)). Putting t = z " 1 we get 

(2 + t 3 \ 
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or, denoting g(t l) = g(t), we have 

Xg(t) = g(R(t)), R(t) = f tj(l + /3/2) 

and R'(0) = f, so the right X for t = 0 (z = oo) is X = f. The expansion of #(z) at 
infinity gives that only every third coefficient is nonzero: 

(8) g(z) = z - ^ A o + AlZ~
3 + A2z'6 + . . . ) . 

Applying (6) we get 

f z _ 1 ( A 0 + Axz-3 + A2z~6 + ...) = 

f z-V(l + Z~ 3/2)(Ao + AlZ-3/(l + z" 3 /2) 3 + . . . ) , 

which in turn produces an infinite system for the coefficients Ak: 

(9) A(l - (f)3fc) = I (t)3*"3' (-iC (3/< j 2j) 4.-,. 

The coefficients Ak have been computed, setting A0 = 1: 

1 •210526316 6 •0374698606 11 •0198737245 

2 •112702810 7 •0319217372 12 •0181318560 

3 •0758967224 8 •0277665223 13 •0166629179 

4 •0568261024 9 •0245425293 14 •0154080218 

5 •0452330629 10 •0219709593 15 •0143240028 

Does the series defined through the coefficients Ak converge? A look at the computed 

values of coefficients suggests that it should converge for |z| > 1. This is actually 

the case. 

For \z\ > 1 there exists exactly one analytic solution of the functional equation 

1 g(z) = g(iz + f z " 2 ) with lim z g(z) = 1. 
Z~* 00 

The coefficients Ak and the resulting series give uniqueness and a construction of 

the function, provided the series converges outside the unit circle. Denote by S this 

outside region. Then from the three branches of R_1 we can choose one so as to be 

analytic on S, 

1Г S. 

Indeed, suppose \z\ > 1 and let us try to solve the equation fy + fy = z with 

|y | > 1. This can be done by iteration setting y0 = z and yn + 1 = \z — y"2. This 

sequence gives \yn\ > 1 and it converges since the derivative of the iteration is 

absolutely below 1. 

Now, infinity is an attractor for R~l, attracting all of S. So it suffices to have the 

solution defined in a neighbourhood of infinity and then extended over S by the 

functional equation. However, as the derivative of R"1 at infinity equals f, an old 

result of Schroder gives the local existence [7]. 
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Can we extend g(z) defined by (8) beyond the unit circle? We shall determine the 
function g in a neighbourhood of the other three fixed points, the attractors 1, 
— i ± i >/3. For reasons of symmetry it is sufficient to take z = 1 and develop a 
there. 

If we set z = 1 + w, then R(z) = 1 + u2(i + fu)/(l + u)2. Thus it is clear that 
if we take the expansion around 1, g cannot be regular with any X, but due to a result 
of Bottcher [6], it must have a logarithmic singularity with X = 2: 

(10) 
fl(l + и) = l n [ - ) + a0 + fllм + fl2м

2 + ... . w 
Here we have chosen the sign so as to make g positive for u > 0. The coefficients at 

are again obtained from the expansion (10) and the equation (6). First we take the 
expansions 

( Ц ) (1 + !«)'• (1 + и)-2' = 2 > y 
j = o 

and comparing the coefficients of the series we get 

(12) 2a; = (-!) '((*) ' - 2)/í + fll_lf(_2 + fl2fc2)í-4 + 

Again we give 15 computed values of the coefficients at: 

1 •666666667 6 •396204846 11 -•161102456 

2 -•055555557 7 -•194656737 12 •933372487 

3 -•160493827 8 -•155483159 13 -1-22566744 

4 •302469136 9 •439798587 14 •0228503829 

5 -•405761317 10 -•377459402 15 3-40248459 

Bottcher's result guarantees the convergence of the series in a neighbourhood of 
z = 1 (u = 0). Can we make any conclusion regarding the radius of convergence? 
Certainly any point of the Julia set will be a singular point for the series, since in any 
neighbourhood of such points there are preimages of z = 1, where we have the 
logarithmic singularity. Thus the point nearest to 1 shall determine the radius of 
convergence. 

Consulting an image of the Julia set (see e.g. [5]) we find r = -6, which we can 
confirm by computation. First we find a cycle of period 2 and solve the equation 
R(R(z)) = z. This is an equation of degree 9, dividing out the three fixed points 
leaves us with degree six, giving three cycles located symmetrically. The cycle nearest 
to z = 1 is 

(13) (|-]arctg /|7 

Cl.2 •538608673 ± -417204483 i, 
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and the distance is 

F- = |1 — C| = '622046251 . 

To see that this is also the radius of convergence of the series (10) we shall follow 
the circles u = O . e1<p, O S r and consider their images under the iteration 

u -> u2(l + fu ) ( l + u)™2 . 

The curve obtained by iteration winds around z = 1 twice, and it may go out of the 
circle |u | = r. If we iterate once again, the curve winds 4 times, and so on. Depending 
on how close to r is the initial radius O, we have to take the number of iterations to 
push the curve inside the circle |u | = r and eventually to any neighbourhood of 
z = 1. Since g can be defined in the neighbourhood, its definition can be extended 
to the whole inside of the circle by the functional equation. 

Denote by C0, Ct and C2 the insides of the circles with radius r and with centers 
at the three roots of unity respectively. We have just defined the function g(z) on C0. 

However, the functions g(z) defined on S and C0 by (8) and (10) do not match 
as they belong to different X. Nonetheless, by virtue of (7) we can make them coincide 
on the intersection. Since S intersects also Ct and C2, we shall take the "common 
denominator" X = §. In the intersection we have 

(14) g3/2(z) = M(g2(z)f , a = In (3/2)/ln 2 . 

To determine M, take a small positive u, set y0 = 1 + u, take the sequence yn = 
= R~ 1(y„-1), which converges to infinity. For u small enough g2 is just the logarithm, 
for yn big enough, g3/2 is just y~x. Therefore 

(15) M = lim An f~\\ * . (\)n\yn = -71515 . 

Of course we have got new branching at z = 1 due to the irrational power a. 
On C! and C2 we can define g3/2 by symmetry. Denote co = — \ + (i/2) ^ 3 , 

then from (8) we conclude 

a(a>z) = co"1 g(z) 

and this serves for the definition in Cx and C2. Thus g is now defined on the union 
D = SU C0U Cj u C2. 

Mapping the unit circle with the Cayley map P, we get the hypocycloid 

z = fei<p + ±Q~2i(p . 

For z between this cycloid and the unit circle there is exactly one R~1(z)e S and so 
g(z) can be defined by (6). We cut the inside of the cycloid symmetrically along the 
radii cp = 0, 2TT/3, 47r/3. For z between these cuts and the cycloid there is again 
a unique K_1(z), lying in the neighbouring sector of the cycloid, and again the 
functional equation (6) applies. 
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III. THE FUNCTION f(w) 

Since we have chosen g(z), its inverse f(w) is now defined, k = \. As the initial 
term of g(z) is z _ 1 , the initial term off(w) is w - 1 . From the functional equation (5), 
f(w) can be presented in the form 

(16) j(H-) » *-- <,(w3), <? (~ t) = (>(o + 0 M O 

and </>(0) = 1. Thus f can be given as a series 

(17) f(W) = W~'(ß0 + BiW3 + ß2vvб + ...) . 

Directly we find B0 = 1, Bx 

(18) 

Yg and the rest from the recursion 

n n— l 

= o y = 0 
1) = 0 , л = 

27 

Again we give 15 coefficients Bt: 

1 

2 

3 

•210526316 

-0202611793 

2-31665041 E-03 

4 -2-62335983 E-04 

5 2-89320177 E-05 

6 

7 

8 

9 

10 

-3-11548372 E-06 

3-29098610 E-07 

-3-42383403 E-08 

3-51887806 E-09 

-3-58084230 E-10 

11 

12 

13 

14 

15 

3-61407374 E-11 

-3-62249244 E-12 

3-60960550 E-13 

-3-57853879 E-14 

3-53207176 E-15 

From the very coefficients it is easy to conjecture, that the radius of convergence 
satisfies |w3 | < 10. However, we shall show that the actual number is |w3 | < 
< 10-8045851. 

We shall start from the singular point W0, f(W0) = oo. Then Wt = jW0 and 
from the equation (5) we conclude that f(W x ) is zero. Further, W2 = \WX = |W 0 

andf(W2) is one of the solutions of the equation 2z3 + 1 = 0. We define a sequence 
of real negative numbers starting with y0 = oo, yt = 0, y2 = —2~ 1 / 3 , yn = 
= R~1(yn-1) where as before R-1 means the solution of the equation 

ÍУn + ІУn Уn-

which is absolutely above unity. 
The corresponding sequence W„ converges to zero and f(Wn) = yn. But for Wn 

small enough, f(Wn) == W~l. Thus we can determine W0 from the limit 

(19) W0 = timfflly. = -2-21073166 

or compute the radius of convergence 

Wl = -10-8045851 . 

Actually we have obtained the radius of convergence because W0 is the singularity 
off nearest to the origin, apart from w = 0, of course. If instead of the sequence yn, 
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defined by R~\ we take another sequence of inverses, we get other singularities. The 
procedure can be like this: choose an integer k and find all the k-inverses of infinity. 
There are 3fc~2 of them. Some of them will be outside the unit circle. Denote then 
by rjk. We prolong the sequence by rjn = R"1^,^^). The singularity is then analo­
gously to (19) 

w = hm (f yi%. 
n~* GO 

For |w| < |W0| the function f(w) is defined by the series (17), while for w outside 
this circle we have to apply the functional equation until we get inside. 

Thus having defined the two functions f and g, we can express the solution of the 
difference equation (4) in terms of them as 

(20) z„ =/((§)» g(z0)). 
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S o u h r n 

САYLEYÚV PROBLÉM 

PETER PETEK 

Newtonova metoda pro výpočet druhé odmocniny vede na lineární diferenční rovnici, кterou 
lze řešit v uzavřeném tvaru pomocí hyperbolicкé кotangenty. V predloženém čìánкu se zavád jí 
dv navzájem inverzní funкce, кteré slouží к témuž účelu v prípad aproximace tretí odmocniny 
a studují se jejich vlastnosti. 
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