Article
Keywords:
ordinary differential equations with parameters; numerical solution; one-step method; parameter estimation; iterative methods; convergence; error estimates; numerical examples
Summary:
In the present paper we are concerned with the problem of numerical solution of ordinary differential equations with parameters. Our method is based on a one-step procedure for IDEs combined with an iterative process. Simple sufficient conditions for the convergence of this method are obtained. Estimations of errors and some numerical examples are given.
References:
[1] I. Babuška M. Práger E. Vitásek:
Numerical processes in differential equations. Praha 1966.
MR 0223101
[3] J. W. Daniel R. E. Moore:
Computation and theory in ordinary differential equations. San Francisco 1970.
MR 0267765
[4] A. Gasparini A. Mangini:
Sul calcolo numerico delle soluzioni di un noto problema ai limiti per l'equazione $y' = \lambda f(x,y)$. Le Matematiche 22 (1965), 101-121.
MR 0191098
[5] P. Henrici:
Discrete variable methods in ordinary differential equations. John Wiley, New York 1962.
MR 0135729 |
Zbl 0112.34901
[6] T. Jankowski M. Kwapisz:
On the existence and uniqueness of solutions of boundary-value problem for differential equations with parameter. Math. Nachr. 71 (1976), 237-247.
DOI 10.1002/mana.19760710119 |
MR 0405190
[7] H. B. Keller:
Numerical methods for two-point boundary-value problems. Blaisdell, London 1968.
MR 0230476 |
Zbl 0172.19503
[8] A. V. Kibenko A. I. Perov:
A two-point boundary value problem with parameter. (Russian), Azerbaidzan. Gos. Univ. Učen. Zap. Ser. Fiz.-Mat. i Him. Nauka 3 (1961), 21 - 30.
MR 0222376
[10] A. Pasquali:
Un procedimento di calcolo connesso ad un noto problema ai limiti per l'equazione $x'=f(t,x,\lambda)$. Le Matematiche 23 (1968), 319-328.
MR 0267785 |
Zbl 0182.22003
[11] Z. B. Seidov:
A multipoint boundary value problem with a parameter for systems of differential equations in Banach space. (Russian). Sibirski Math. Z. 9 (1968), 223 - 228.
MR 0281987
[12] J. Stoer R. Bulirsch:
Introduction to numerical analysis. New York, Heidelberg, Berlin 1980.
MR 0578346
[13] H. J. Stetter:
Analysis of discretization methods for ordinary differential equations. New York, Heidelberg, Berlin 1973.
MR 0426438 |
Zbl 0276.65001
[14] K. Zawischa:
Über die Differentialgleichung $y' = kf(x,y)$ deren Lösungskurve durch zwei gegebene Punkte hindurchgehen soll. Monatsh. Math. Phys. 37 (1930), 103-124.
DOI 10.1007/BF01696760 |
MR 1549778