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ONE-STEP METHODS FOR ORDINARY DIFFERENTIAL
EQUATIONS WITH PARAMETERS

TADEUSZ JANKOWSKI
(Received November 24, 1988)

Summary. In the present paper we are concerned with the problem of numerical solution
of ordinary differential equations with parameters. Qur method is based on a one-step procedure
for ODEs combined with an iterative process. Simple sufficient conditions for the convergence
of this method are obtained. Estimations of errors and some numerical examples are given.

Keywords: Ordinary differential equations with parameters, numerical solution, one-step
method.

1. INTRODUCTION

Let C(I, R denote the set of all continuous functions on I into R4, I = [a, f],
o < B. Here R? denotes some g-dimensional real linear space of elements x =
= (x4, X2, ..., X,)* with a norm | .

We consider the differential equation of the form

(1) v(t) =£(t, y(@), 2, tel,
with boundary conditions
@ y(@) = yo.

. 0) ¥i + Ny(p) = R,

where A€ R? is a parameter and f:1 x R? x R? —» R% The condition (3) is linear
in A4 and y(B). The square matrices M and N of order g are given and such that
M + N is nonsingular. The vector K € R? is given too.

By a solution (¢, 1) of BVP (1—3) we mean a function ¢ € C(I, R?) and a parameter
2 € R? that satisfy BVP (1—3). This boundary value problem (1—3) is know also
as an eigenvalue problem for ODEs or as a problem of terminal control (see [12]).
Many special cases can be reduced to BVP (1—3) (see [6]).

Existence and uniqueness theorems for (1—3) were established in many papers
(for example, see [6, 8, 10, 11]). We assume that BVP (1—3) has a solution (¢, 1) €
€ C(I, RY x R Our task is to approximate it by a numerical procedure.
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Let N be a positive integer and h = (8 — @)/N, Ry = {0, 1, ..., N}. In practical
calculations the solution (¢, 4) is approximated by (v, 4,;) where the approximate
solution y, corresponding to a step size  is defined on the set {t,; = o + ih: i e Ry}.
We use a onestep method for y, with an iterative method for 4,; for finding the numeri-
cal solution (y;, 4,;) of BVP (1-3).

They are defined by

(4) {lho = 4o, - ~ _ N -

Mjer = Ay — (M + N)~1 [MA; + Nyy(B; 4;) — K], j=0,1,...-
and

J’h(th(); /11,,') = Yo
) Iithms 15 A7) = Valtans A7) + B(ths Yithas Aaz)s o ) »

neRy_{, j=0,1,....
Applying the above procedure for finding (y,, 4,;) we have to determine an initial
value for A,. Having it we find y, using (5) and then a new value for 4 using (4) and
SO on.

The purpose of this paper is to give sufficient conditions for the convergence
of the method (4—5). This convergence is proved under the assumption that f
satisfies the Lipschitz condition with suitable constants with respect to the last two
variables. The above mentioned result may be weakened for a special kind of BVPs
for which the convergence and the estimates of errors are established (see Theorem 2).
Numerical examples are presented.

2. DEFINITION AND ASSUMPTIONS

We introduce the following definition.

Definition 1. We say that the method (4—5) is convergent to the solution (¢, 1)
of BPV(1-3) if
lim max ||t 4) — yi(tus 4y)] = 0,
-+ ieRN
e
llm U)“hj - A” = 0 .
N=o
jo o
Remark 1. Note that (4) is identical with
Ayyrr = (M + M) {K = N[yi(B; ;) — 2]}
or
lh,j-{-l = —yh(ﬁ: j’h_]) + (M + N~)_1 {K + Nj‘hj + Myh(ﬂ; )'h])} .

This remark may be useful for such cases when the formula (4) is too costly in numeri-
cal calculations. Perhaps its other presentation would be less expensive.

Remark 2. There are two integers j and N in the definition (4—5). Both j and
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N tend to infinity. The independent index j may be eliminated and expressed by N,
namely
Ay = 4o, a fixed initial vector,
Aivr =4 — (M + N)"'[M4; + Ny, (B; 2;) — K],
j=N,N+1,....
As a matter of course, taking now N + [ instead of N we have a new 2 and for the
new stepsize h = (B — «)/(N + 1) we are able to find the approximation y, of our
solution. Now only N approaches 0.
Assumption H,. Let
1°f:] x REx RY > R%, ®:1 x RT x R x H— R%, H=[0,hy], hy >0, and
f is continuous with respect to the first two variables uniformly with respect to the
last variable,
2° there exist constants Ly, L, > 0 such that for tel, (x, X, u, i) € R** we have

110, %) = £ % )] S Ll = 5] + Laflu - 7]
3° M and N are square matrices of order q, M + N is nonsingular, and there
is a constant m € (0, 1) such that
(7 + ®) ] < m,
where the matrix norm is consistent with the vector norm,
4° there exists a function n: H— R, = [0, o), limn(h) =0, such that for
every (t, y, u, h)el x R* x R* x H we have h=0
[@(t, y, u, ) = f(t, y, )| < n(h).
Remark 3. It is known that the matrix norm is consistent with the vector norm if
lex) < el [+l

where C is a square matrix of order g and x € RY.
As the matrix norm we can take the corresponding subordinate matrix norm
defined by

lub (C) = max ”_”("_xl_” , where 0 is the zero vector in R?.
x*0 X

It is consistent with the vector norm used to define it:
”Cx” < lub (C) ﬂxu .

Obviously lub (C) is the smallest of all the matrix norms ||C|| which are consistent
with the vector norm ”x", therefore

tub (€) < ] .

Examples of subordinate matrix norms:
1) for the maximum norm

[l = maxxf,
i€eRg
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the subordinate matrix norm is the row-sum norm
q
lub, (C) = max ) |e;;|, C = [e;],
ieRg j=1

2) associated with the Euclidean norm

q
Ix]2 = \/(,;lx-'lz)
we have the subordinate matrix norm

IUbZ (C) = \/('J“max(CTC))

which is expressed in terms of the largest eigenvalue A_ . of the matrix CTC.

Remark 4. If the condition 4° is satisfied only for the solution (¢, 1) of (1—3)
then it is necessary to add that the function @ satisfies the Lipschitz condition with
respect to the second and third variables.

max

3. CONVERGENCE OF THE METHOD (4—5)
We are now in a position to establish the main convergence theorem and the
associated error estimates. We have

Theorem 1. If Assumption H, is satisfied and if

1° there exists a solution (¢, 1) of BVP (1—3),
2° d = m(1 + A) < 1 where

- j— [exp (8 — @) L) — 1],

then the method (4—5) is convergent to the solution (¢, 2) of BVP (1-3), and the
estimates

(6) Iy = A S u(h), j=0.1,...,
and
(7) max [94(thns Aa;) — @(tsas A)| < Auy(h) + Bx(h), j=0,1...,

hold true. Here y approaches 0 as h approaches 0, B = A/Lz and

- 1—&
uy(h) = d’]Ay — A| + mB y(h) "
Proof. Put
Ve = | 7s(thas Aaj) — @(ts3 /1)” .

By the mean value theorem we have

(p(th,n-{- l) = (p(tlm) + hf(thn + Th, (P(thn + Th); /1) >
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where 0 < 7 < 1. Now by subtracting the values ¢@(ty,u+1:4) from (5) we are able
to get the relation

Vit = [0a(tns Auy) — o(tws 1| +
+ h”(p(thm yh(thn; ’Ihj)’ )“hj’ h) - f(tlma .Vh(thn; /1;.,-), ﬂhj)“ +
-+ hﬂf (thns Vit A)s Aj) = S (thms (b3 A A)" +
+ b f (tras Pt 2)s 2) = f(tun + Thy @t + Ths 25 D] £
< (U+ hLy) vly + hLy| Ay — A + hx(h) s

where y(h) = n(h) + x4(h) and
wi(h) = sup 17t 2(2), 2) = f(t + s, 2(t + ), 2)| -

O0sSs<h
z,AeR4

The function y, tends to zero as h — 0.
Using Lemma 1.2 of [ 5] we can write

gy < [RLy| Ay — 4] + x(h)]nzlexp (ihL;), ne€Ry,
or =
vjy < A|dy; — A + Bx(h), neRy, j=0,1,....
Now the definition of {4,;} directly implies
[Anjer = A = [y — 2 — (8 + )~ [MAy; + Nyi(Bs 2j) —
— K — M — No(; 1) + K]| =
137 + F)~* N[ — & — (s 4y) + (B V]
mAy = A + o], J=0,1,...,

IA
lIA

or
(45,541 — A £ m(1 + A4) |4,; — A + mBx(h), j=0,1,....
Using again Lemma 1.2 [5] we obtain the estimate (6). Now the relation (7) is
satisfied, too. Hence, because of 2° we see that

limu;(h) = 0.
r-o
=

It means that the method (4—5) is convergent to the solution (¢, 1) of BVP (1-3).
The proof of Theorem 1 is completed.

Remark 5. It follows from the estimates (6 —7) that the numerical method (4—5)
is convergent to the solution (¢, ) if the sequence {4,;} is convergent to A.

Remark 6. If the problem (1—3) has solutions (¢, ), (¢, 4,) such that
o(B; A1) = @(B; 2,), and if det (M) # 0, then A; = 4,. To prove it we suppose
that 4; + 4,. Now we see

M, + ﬁ‘P(ﬁ; 11) = Mi, + N‘P(ﬂQ 12) ,
so Ay = 4,.

71



Remark 7. If there is a number y > 0 with m + (L,/L,)y < 1 such that
(B - o) L, éln(l +1),
m
then the condition 2° is satisfied.
Remark 8. Put
e 7) = 222,
g

Let us determine the function C as a solution of the initial problem
(d/dt) C(t; 1) = J4(t, o(t; 2), 1) C(t; A) + J,(t, @(t; 1), 4),
Cla; 2) =6,
where :
of(t, y, 4 of(t, y, A
ROR DA R BN (US 20
dy 0

So J, and J, are the Jacobian matrices of partial derivatives of f.
Now instead of (4) we may apply the Newton method in the form

Injrr = hij = [M + NC(B; 2] [MAy; + Nyi(B; %) — K],

or its modified form with C,(B; 4) instead of C,(B; 4;). Such method usually con-
verges rapidly to the solution A but as you see it is a little complicated in this case.
To use it we would determine C(; 4,;) by a numerical method to get its approxima-
tion C,(B; A4;). Moreover, it should be known that M + NC,(B; 4;;) is nonsingular
and

I3 + NCy(B; )] " N = m < 1.

4. NUMERICAL EXAMPLES WITH M = ¢

Here we present results for Euler, Heun (second order), and Runge-Kutta (fourth
order) methods on numerical problems. The calculations were carried out for two
different starting vectors A, with a fixed stepsize 4. Only the numerical solutions y,
for the last point ¢ and the corresponding 4,; are given. We obtain our numerical
solutions (v, 4,;) if |4; — An ;-] < & = -0001. The computations were carried
out on IBM PC.

Example 1. We consider the boundary-value problem

() =1—1* —sin(t + 1) — tcos(t + 1) + 3cos (t) + ty(t) —
— Acos(t), te[0,m—1],
»(0) = cos (1), 1504 + y(r — 1) = 7 + 448 .

It has the exact solution
o(t)=t+cos(t+1), 2=3, o(t—1)~11416.
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Indeed, we have
Li=n-1, L,=1, (A'Z(+]\7)’1N”=l_;l=m,

m [1 + %(exp ((r = 1)?) - 1)] ~ 3070 < 1.

All assumptions of Theorem 1 are satisfied, so the method (4—5) is convergent
to (¢, A). The calculations are made for the stepsize h = (n — 1)[100. The results
are given in the following tables.

Euler Heun Runge-Kutta
j j'hj yh(ﬂ— 1;;"']) j’hj y,,(n—« 1;)-;,_,-) }'hj yh(n— I;Ahj)
0 0000 23-3495 -0000 24-6334 -0000 24-6407
1 2-8317 2-3830 2:8246 2:5154 2-8245 2:5162
2 2:9907 1-1950 2-9897 1-2219 2-9897 1-2220
3 2:9996 1-1284 2:9994 1-1462 2:9994 1-1463
4 3-0001 1-1246 3-0000 1-1418 3-0000 1-1419
5 3-0001 1-1244 3-0000 1-1416 3-0000 1-1416
Euler Heun Runge-Kutta
j )°hj yp(m— 1; lhj) ’]hj yu(m—1; ;-}.j) lhj yp(m— 1; }vhj)
0 5-0000 —13-8243 5-0000 —14-5197 5-0000 —14-5245
1 3-1124 -2854 3-1170 2257 3-1170 -2252
2 3-0064 1-0773 3-0068 1-0880 3-0068 1-0880
3 3-0005 1-1218 3-0004 1-1384 3-0004 1-1385
4 3-0001 1-1243 3-0000 1-1413 3-0000 1-1414
5 3-0001 1-1244 3-0000 1-1415 3-0000 1-1416

Example 2. Now we consider the system

yi(t) =t y,(t) + yo(t) + (L = 3) Ay + 24, — tsin(t) — 2,
yi(t) = —yi(t) + tAy — 2624, + 2t, for te0,1],

with the conditions
y1(0)=0’ y2(0)=13

~ |4 N J’1(1§}»1a /12) &
M|+ N =K,
[12] I:h(l; A1 )»z)
~ —-02 99 <02 -01
M=[~-97 0]’ Nz[—m 0]’ ‘

- [ -02sin (1) + 01 cos (1) + 1-01
~ | —-03sin(1) — -53

where
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Our problem has the solution given by
@(t) = sin(t) + 5t + 12, @,(t) = cos(t) + 1* — 1*,
=5, =1, @)~ 23415, g¢,(1)~ -5403.
Similarly as in the previous example we have
L =2, L,=3, m=-03,
A=15(exp(2) — 1), m(l + A)=-03(15exp(2) —5) < 1.

The numerical values for this problem are given in the following tables for h = -01.

Euler Heun Runge-Kutta
j 21 ,hj 1 a5 25 2q hj Y1 (15 A 5) Ay hj Y1015 A7)
23 hj Y2115 A ) 22 hj Y2115 ) A2 hj V2,115 Ay)
0 -0000 -8410 -0000 - 8414 -0000 -8415
-0000 1-:5346 -0000 1-5403 -0000 1-5403
1 5300 2-3649 +5300 2-3715 +5300 2:3715
1-0001 +5536 1-0600 +5403 1-0000 +5403
2 5002 2-3350 5000 2:3415 +5000 2:3415
1-0000 +5536 1-0000 5403 1-6000 5403
3 5002 2:3350 <5000 2-3415 5000 2-3415
1-0000 +5536 1-G000 +5403 1-0000 +5403
Euler Heun Runge-Kutta
j 2y hj Y1 a(L5 A Aponj Y15 245) 21 nj Y165 Ayp)
Ay nj Y2115 2y) Aanj  Vaulls Ay A2 hj Y2115 Ay5)
0 5-0000 10-8099 5-0000 10-8417 5-0000 10-8415
5-0000 —3-3702 5-0000 — 3-4598 5-0000 — 34597
1 -3809 2-2155 -3800 2-2215 +3800 2-2215
-9997 5539 1-6000 5403 1-0000 5403
2 +5002 2-3350 +5000 2:3415 +5000 2:3415
1-00C0 <5536 1-0000 5403 1-0000 +5403
3 -5002 2:3350 +5000 2:3415 5000 2:3415
1-0000 -5536 1-0000 +5403 1-0000 -5403

5. BVP WITHOUT PARAMETERS

It is clear that the problem (1—3) may be expressed as BVP without parameters.
It has then the form

®) {Y’@ = J(t. ¥(1)), tel,

AY(w)+ BY(p) = C,
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where
Y=[yly"')yq’yzpl-u-"’quJT’ (yq+i(t)=li, i=1723~"$q)’

J=0fisfp, 0,...,0]", feR™,

i-[L2] 5=[22] e=[x].
(OANC) N M K
The square matrices 4 and B are of order 2¢ while the unit matrix I and the zero

matrix © are of order q. Now the numerical method is convergent if the matrix
A + B is nonsingular, and the conditions

0 T+ BBl b,
and
(10) blexp (L(B — @) = 1) < 1,

are fulfilled. Here Lis the Lipschitz constant for f with respect to the second variable
(see [3, 7, 12]). The conditions obtained in this paper are similar to (9—10). For
some cases our result is better than that obtained by Keller. To explain it we consider
a scalar problem, i.e. ¢ = 1. The problem (1—3) has now the form (8) with

=) - [35) e[

Here N, M, y, and K are given numbers.
To compare the results we take the maximum norm

[¥l = max (jxi], x])

Using the matrix norm we have
N _

A+ B B, =1+ ﬁ|=b, M40, L=L +L,,

and the condition (10) is now of the form
(11) [1 + f% } [exp (Lo + Ly) (B — o)) — 1] < 1.

The corresponding condition 2° of Theorem 1 has the form

(12) i JI % |:1 + % (exp (Ly(B — @) — 1):! <1.
Now we assume that
1) L =L,,
2) M =aN for aesf = R\[—1— /2, -1+ /2],
3) V2= exp(Ly(B— o)) < |l + a| for aesl.

We see that for such cases only the condition (12) is satisfied (the condition (11)
is not satisﬁed). A similar result is obtained if we take another norm. It means that
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for the above cases our result is a little better than Keller’s one. Both Keller’s result
and ours require M + ©. The last condition may be weakened but only for a special
kind of the function f.

6. SPECIAL CASE OF THE FUNCTION f

Whereas initial-value problems are normally uniquely solvable, boundary-value
problems can also have no solution or several solutions. Even separated linear
boundary-value problems are too general. It is well known that the assumptions
of Keller’s theorem for the existence of solutions of BVP(8) are very restrictive and
already in the case ¢ = 1 they are not satisfied for such simple boundary conditions as

Y1(°‘) =C15 )H(ﬁ) =C.

A similar situation occurs with our problem. The conditions of Theorem 1 are
only sufficient, and, for example, the assumption 2° is not satisfied if M = @. For
this reason we consider the equation (1) in which the function f has a special form,
namely

(13) y(6) = g(t, y(t) + S() 4, 2) = £1(6) (0(1) + S(2) 2) = f (1, y(2), 2) -
Here, S is a square matrix function of order ¢, and g: I x R? x R? — RY, f,: I —»R.
We assume in addition that f; does not change its sign in I, so

(14) fi(H)=20 or fi(t)<0 forall tel.

We see that the function f is written as a sum of a linear part (in y and A) and a non-
linear one of a special type. For such case the assumption 2° can be weakened.
Now we are in a position to define the numerical method for finding the solution
(¢, 2) of our problem. It is given by

(15) A1 = Ay — (M — NS(B))~' [MA; + Nyy(B; 4y) — K],
j=0,1,..,
and
(16) {)’h(‘hoi Ahj) = Yo >
yh(th,n+ 1 )»hj) = J’h(th..§ }w) + hd)(thm yh(thn; j’hj)a Anjs h) , neRy_4.
Theorem 2. If

1°¢:1 x R x R x H— R%, g:1 x R x R? > R% f, € C(I, R) and g is continu-
ous with respect to the first two variables uniformly with respect to the last variable,

2° the matrices M, N and S are square of order q, S is a matrix function defined
fortel,and K € RY,

3° the matrix M — N S(B) is nonsingular and there is a constant m such that

(¥ — Fs(B)™* N < m,

where the matrix norm is consistent with the vector norm and [|I|| = 1,
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4° there exist constants Ly and L, such that
sup |S(r)| £ Ls, sup ”S’(t)" =L,,
tel tel

5° the condition (14) is satisfied,

6° there exist constants L, Ly = 0 such that for tel, x,X, u, i€ R* x R? x
X RT x R%we have

lo(t.x, 1) = g(t. %, B)]| < Lillx = =] + Ls[le — &,
7° there exists a function n: H — Ry, n(h) > 0 as h — 0, such that for t, y, y, h €
el x R? x R? x H we have

lo(t, v, 1 1) = £t y, W] = (k) ,
where f is defined in (13), »
8° there exists a solution (¢, 1) of BVP (13,2, 3),
9° d = mQ < 1 where
Ly+ (B — ) (Ly + Ly) if L=L,— L, =0, L, = inf £,(t),

el
exp (L(B — o)) (Ls + (Ls + Ls)/L) — (Ly + L)L
if L>0 or L<0, Ly+0 and L,L< —(L,+Ls),

— (L, + L)L if —=(Ly+Ls)<LyL<0 or Ly=0,

then the method (15—16) is convergent to the solution (¢, 1) of BVP (13, 2, 3) and
we have the following estimates:

Q=

(17) [4s; = Al < k), j=0,1,...,
(18) max [yi(t; A) = @(tws A = p2 @(h) + py 2(h), j=0,1,...,
neRn
where
N . 1—d
ul(h) = dl”’l() bl /1” + mp, X(h)m s J = 0, 1, cose
The constants py and p, are of the form
Al st
L -1, " 7t
pr=48—« if Ly=L,,
! if Ly <L,,
L, - L,
Lya + 1)+-L££—52(a- ) if L >L,,
p2 = {2Ls + (B — @) (Ly + Ls) if Lj=1L,,
2L3+M if L, <L,,
L, - L,
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with
a=exp((L, — L) (B — ).
Moreover, if L, > 0 it is necessary to add the above conditions are satisfied for the
step size h such that
1

< .
sup f1(¢)

tel

Proof. BVP (13, 2, 3) has a solution, so using the definition of Anj we have
Piger = 2 = 4 = 2 = (8 = N S(B))™" [MAy; + Nyi(B; 4y) —
— MA - No(B; ]| £ mwj,
where
w, = “yh(thnf Aj) = @(tws 2) + S(th,) (Anj — ;L)” . neRy.
It is possible to prove that the elements w/ satisfy the inequalities
(19) {wrl;+l é C"Wg; +h X(h) + h(L4 + LS) ”Ahj - j’" » h ERN-l s
wh = Lofd, — 2,
where
¢, = |1 = hfi(tw)] + hL, .
The relation (19) is obtained by applying the definition of {y,} and the assumptions.
Here y has a similar form as in Theorem 1.
We consider only the case when
(20) fi(t)=2 0 for tel,
(for the other one the proof is similar). Now from this condition we see that
1—nhft) >0,
and hence
¢ =1—hf(t,) + hLy <1 + hL.

In fact L may be positive, negative or zero.
Now (19) directly implies

w) < a,|A; — A + b, x(h), neRy, j=0,1,..,
where

{(1 + hL)y'Ls + %[(1 + Ly —1] if L+0,

a
Ly + (B — ) (L, + L) if L=0,
(L+hL) =1 4 1 oo,

b, = L
B— o if L=0.

Hence we obtain
[4ne1 — 4] £ mwl < may| Ay — A + mby x(h), j=0,1,...,
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M = ] S (na P~ 2]+ mbya) LT

It means that the inequality (17) is satisfied.
Now the inequality

”yh(thn; /I/Ij) - (p(thn; l)” <

A

IIA

wi + L4y — 4]

<

ay

= ”yh(thn; lhj) - (p(thn; A’) + S(thn) (j'hj - '1) - S(thﬂ) (Ahl' - /1)” é
|2y = A + byx(h) + Lsf|2; = 4],
implies that the relation (18) holds. The proof is complete.

Remark 9. It is known that the subordinate matrix norm lub (-) is consistent
with the vector norm and lub (I) = 1. Indeed, we can write the conditions 3° and 4°

using the norm lub () as well.

Remark 10. The following estimate
”yh(thn; lhj) - (p(thn; ’1) + S(thn) (ﬂ'hj - l)” é au ’Z](h) + bn X(h) >

neRy, j=0,1,..,

follows from the proof of Theorem 2.

7. NUMERICAL EXAMPLES WITH M = 0

We consider now some examples for the case M = 0 to demonstrate the con-
vergence behaviour of our methods.

Example 3.

{y’(t): >+ 2t + 3 +sin(f) + cos(t) — y(1) — A, te[0,n],

y0) =1, y(m;2)=n*+1.

The exact solution is
() = + 1 +sin(r), A=2, o)~ 10-8696.

Here

L,=0, Ly=0, Ly=1, L,=0, L,=1, m=1,
Q =exp(—mn).
The calculations are made for the stepsize h = n:/ 100.
Euler Heun Runge-Kutta

J Z;.j Yy(m; /1;,,-) }-hj Yi(T; lhj) '{;,j yu(m; /1;,,-)
0 +0000 127655 -0000 12-7835 +0000 12-7832
1 1-8959 10-9475 1-9139 10-9524 1-9136 10-9523
2 1-9738 10-8728 1-9967 10-8732 1-9963 10-8732
3 1-9770 10-8697 2:0002 10-8698 1-9998 10-8698
4 1-9771 10-8696 2:0004 10-8696 2:0000 10-8696
5 1-9772 10-8696 2:0004 10-8696 2:0000 10-8696
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Euler Heun

Runge-Kutta

j Ahj y,,(n; 1;,1') )'hj y;.(n; /I;,j) }*hj y;,(n; /‘L),j)
0 5-0000 7-9710 5-0000 7-9997 5-0000 7-9992
1 2-1014 10-7505 2-1301 10-7455 2:1296 10-7456
2 1-9823 10-8647 2-0060 10-8642 2-0056 10-8642
3 1-9774 10-8694 2:0007 10-8694 2-0002 10-8694
4 1-9772 10-8696 2-0004 10-8696 2-0000 10-8696
5 1-9772 10-8696 2:0004 10-8696 2-0000 10-8696
Example 4. Let
y'(t) = cos® (y(1) — ([9) 2 + 3t — 2) — (¢ + 3) (y(t) — (#*/9) 2) —
-3 -5+2, tel0,2],
y(0)=2, y(2)=0.
The exact solution is
o) =r*=3t+2, 2=9.
In this case we have
L,=1, L,=3, L3=4/9, L,=4]9, L;=0, m=9/4,

Q ~ 2263, d =~ -5091.
The calculations are made for h = -02.

Euler Heun Runge-Kutta
J /lhj }’h(2§ )hj) Ahj .Vh(2§ lh_,') 1;,1' yi(2; Ahj)
0 -0000 —3-3254 +0000 —3-3256 -0000 —3:3256
1 7-4822 — 5549 7-4827 — 5513 7-4826 — -5515
2 87307 — -1015 87231 — +1001 87235 — +1001
3 89591 — 0190 8:9482 — -0185 8:9487 — -0186
4 9-:0018 — +0036 89899 — -0034 8:9905 — +0035
5 9:0097 — -0007 8:9976 — -0006 8:9982 — -0006
6 9-0112 — +0001 8:9991 — +0001 8-:9997 — +0001
7 9:0115 — +0000 89994 — +0000 8-9999 — +0000
8 9-0116 — +0000 8-9994 — +0000 9-0000 — -0000
Euler Heun Runge-Kutta
J lhj yi(2; l},j) ihj Yu(2; }'hj) }‘hj yu(2; l;,j)
0 5-0000 —1-4657 5-0000 —1-4636 5-0000 —1-4637
1 82978 — 2583 8:2931 — +2561 8:2933 — 2562
2 88790 — -0479 8:8693 — -0471 8-8698 — 0471
3 8:9868 — -0090 8-:9752 — -0087 8:9758 — +0088
4 9:0069 — -0017 8:9949 — 0016 8-9955 — 0016
5 9:0107 — -0003 89986 — 6003 8:9992 — -0003
6 9-0114 — +0001 8:9993 — 0001 89998 — 0001
7 9:0116 — +0000 8:9994 — -0000 9-0000 — 0000
8 9-0116 — +0000 8:9994 — -0000 9-:0000 — 0000
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Example 5. Now we take the problem
y'(t) = sin (y(t) + 4) — 3(y(t) + 2) — sin (3 = 32 + L11) + 3¢° -
-6+t + 4, te[0,2],

y(0) = =75, y(2)=-75.

It has the exact solution
o) =P =34 =3, 2=3,

We have
L,=1, L,=3, Ly=1, L,=0, L;=0, m=1,
Q0 =exp(—4).

The calculations are made for h = -02.

Fig. 1. Graph of y;, for &= -02 and A, Ay, A4 With A= 5.
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Euler Heun Runge-Kutta

J l,,j (2 A}.j) )vh_,' yh(2§ )-;.j) )q,j yu(2; }'hj)
0 -0000 1-4782 -0000 1-4923 -0000 1-4918
1 <7282 <7572 7423 7581 +7418 7581
2 +7354 -7501 <7504 <7500 7499 7501
3 7355 +7500 <7505 7500 <7500 <7500
Euler Heun Runge-Kutta
J }vh_,' Yi(2; lhj) lhj yu(2; )q,j) Ahj Yu(2; Ahj)
0 5-0000 —3-4925 5-0000 —3-4747 5-0000 —3-3752
1 <7575 <7282 <7753 <7254 +7748 <7254
2 7357 <7498 <7507 +7497 +7503 7497
3 +7355 7500 7505 7500 7500 7500
4 7355 7500 7505 7500 +7500 +7500
References

111 1. Babuska, M. Pragér, E. Vitdsek: Numerical processes in differential equations, Praha 1966.
[2] R. Conti: Problemes lineaires pour les équations differentialles ordinaires, Math. Nachr.
23 (1961), 161—178.
[3]1 J. W. Daniel, R. E. Moore: Computation and theory in ordinary differential equations,
San Francisco 1970.
[4]1 A. Gasparini, A. Mangini: Sul calcolo numerico delle soluzioni di un noto problema ai
limiti per léquazione y* = 1 f(x, y). Le Matematiche 22 (1965), 101—121.
[5] P. Henrici: Discrete variable methods in ordinary differential equations. John Wiley, New
York 1962.
[6] T.Jankowski, M. Kwapisz: On the existence and uniqueness of solutions of boundary-value
problem for differential equations with parameter, Math. Nachr. 71 (1976), 237—247.
[7]1 H. B. Keller: Numerical methods for two-point boundary-value problems. Blaisdell, London
1968.
[8] A. V. Kibenko, A. 1. Perov: A two-point boundary value problem with parameter (Russian),
Azerbaidzan. Gos. Univ. U&en. Zap. Ser. Fiz.-Mat. i Him. Nauka 3 (1961), 21— 30.
[9] J. Lambert: Computational methods in ordinary differential equations, London 1973.
[10] A. Pasquali: Un procedimento di calcolo connesso ad un noto problema ai limiti per I’equa-
zione x’ = f(t, x, 2). Le Matematiche 23 (1968), 319—328.
[11] Z. B. Seidov: A multipoint boundary value problem with a parameter for systems of differen-
tial equations in Banach space (Russian). Sibirski Math. Z. 9 (1968), 223—228.
[12] J. Stoer, R. Bulirsch: Introduction to numerical analysis. New York, Heidelberg, Berlin 1980.
[13] H. J. Stetter: Analysis of discretization methods for ordinary differential equations. New
York, Heidelberg, Berlin 1973.
[14] K. Zawischa: Uber die Differentialgleichung y' = kf(x, y) deren Losungskurve durch zwei
gegebene Punkte hindurchgehen soll. Monatsh. Math. Phys. 37 (1930), 103—124.

82



Souhrn

JEDNOKROKOVE METODY PRO OBYCEJNE DIFERENCIALNi ROVNICE
S PARAMETRY

TADEUSZ JANKOWSKi

Clanek se zabyva numerickym FeSenim obyCejnych diferencialnich rovnic s parametry. Pfed-
loZena metoda je zaloZena na jednokrokové procedufe pro ODR kombinované s iterativnim
postupem. Jsou dokazany jednoduché postalujici podminky pro konvergenci této metody,
odvozeny odhady chyb a uvedeny numerické priklady.

Author’s address: Dr. Tadeusz Jankowski, ul. Rylkego 4, 80— 307 Gdansk, Poland.
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