[1] P. G. Ciarlet:
The finite element method for elliptic problems. North. Holland, Amsterdam 1978.
MR 0520174 |
Zbl 0383.65058
[2] J. Descloux: Basic properties of Sobolev spaces, approximation by finite elements. Ecole polytechnique féderale Lausanne, Switzerland 1975.
[4] R. Glowinski J. L. Lions R. Tremolieres: Analyse numerique des inequations variationelles. Dunod, Paris 1976.
[5] D. Henry:
Geometric theory of semilinear parabolic equations. Springer-Verlag, Berlin - Heidelberg-New York 1981.
MR 0610244 |
Zbl 0456.35001
[6] J. Kačur: Application of Rothe's method to evolution integrodifferential equations. Universität Heidelberg, SFB 123, 381, 1986.
[7] J. Kačur:
Method or Rothe in evolution equations. Teubner Texte zur Mathematik 80, Leipzig 1985.
MR 0834176
[8] A. Kufner O. John S. Fučík:
Function spaces. Academia, Prague 1977.
MR 0482102
[9] M. Marino A. Maugeri:
$L_p$-theory and partial Hölder continuity for quasilinear parabolic systems of higher order with strictly controlled growth. Ann. Mat. Рurа Appl. 139 (1985), 107-145.
DOI 10.1007/BF01766852 |
MR 0798171
[10] V. Pluschke:
Local solution of parabolic equations with strongly increasing nonlinearity by the Rothe method. (to appear in Czechoslovak. Math. J.).
MR 0962908 |
Zbl 0671.35037
[11] K. Rektorys:
The method of discretization in time and and partial differential equations. D. Reidel. Publ. Do., Dordrecht-Boston-London 1982.
MR 0689712
[12] Ch. G. Simander: On Dirichlet's boundary value problem. Lecture Notes in Math. 268, Springer-Verlag, Berlin-Heidelberg-New York 1972.
[13] M. Slodička: An investigation of convergence and error estimate of approximate solution for quasiliriear integrodifferential equation. (to appear).
[15] V. Thomee:
Galerkin finite element method for parabolic problems. Lecture Notes in Math. 1054, Springer-Verlag, Berlin -Heidelberg-New York-Tokyo 1984.
MR 0744045
[16] M. F. Wheeler:
A priori $L_2$-error estimates for Galerkin approximations to parabolic partial differential equations. SIAM. J. Numer. Anal. 10 (1973), 723 - 759.
DOI 10.1137/0710062 |
MR 0351124