[1] P. Billingsley:
Ergodic Theory and Information. Wiley, New York, (1964).
MR 0192027
[2] P. Billingsley:
The Lindenberg-Lévy theorem for martingales. Proc. Amer. Math. Soc. 12 (1961), 788-792.
MR 0126871
[4] C. G. Esseen S. Janson:
On moment conditions for normed sums of independent variables and martingale differences. Stoch. Proc. and their Appl. 19 (1985). 173-182.
DOI 10.1016/0304-4149(85)90048-1 |
MR 0780729
[5] M. I. Gordin:
The central limit theorem for stationary processes. Soviet Math. Dokl. 10 (1969), 1174-1176.
MR 0251785 |
Zbl 0212.50005
[6] M. I. Gordin: Abstracts of Communications, T.1: A-K. International conference on probability theory (Vilnius, 1973).
[7] P. Hall C. C. Heyde:
Martingale Limit Theory and its Applications. Academic Press, New York, 1980.
MR 0624435
[11] I. A. Ibragimov:
A central limit theorem for a class of dependent random variables. Theory Probab. Appl. 8 (1963), 83-89.
MR 0151997 |
Zbl 0123.36103
[12] M. Loève:
Probability Theory. Van Nostrand, New York, 1955.
MR 0203748
[14] D. Volný: The central limit problem for strictly stationary sequences. Ph. D. Thesis, Mathematical Inst. Charles University, Praha, 1984.
[15] D. Volný:
Approximation of stationary processes and the central limit problem. LN in Mathematics 1299 (Proceedings of the Japan- USSR Symposium on Probability Theory, Kyoto 1986) 532-540.
MR 0936028
[16] D. Volný:
Martingale decompositions of stationary processes. Yokohama Math. J. 35 (1987), 113-121.
MR 0928378
[17] D. Volný:
Counterexamples to the central limit problem for stationary dependent random variables. Yokohama Math. J. 36 (1988), 69-78.
MR 0978876
[18] D. Volný:
On the invariance principle and functional law of iterated logarithm for non ergodic processes. Yokohama Math. J. 35 (1987), 137-141.
MR 0928380
[19] D. Volný:
A non ergodic version of Gordin's CLT for integrable stationary processes. Comment. Math. Univ. Carolinae 28, 3 (1987), 419-425.
MR 0912569