Previous |  Up |  Next

Article

Keywords:
superconvergence; external approximation; pointwise error estimate; finite element subspaces; orthogonal projections; ordinary differential operators
Summary:
A pointwise error estimate and an estimate in norm are obtained for a class of external methods approximating boundary value problems. Dependence of a superconvergence phenomenon on the external approximation method is studied. In this general framework, superconvergence at the knot points for piecewise polynomial external methods is established.
References:
[1] J. P. Aubin: Approximation of elliptic boundary value problems. Wiley-Interscience (1972). MR 0478662 | Zbl 0248.65063
[2] I. Babuška J. E. Osborn: Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983), 510-536. DOI 10.1137/0720034 | MR 0701094
[3] C. de Boor B. Swartz: Collocation at Gaussian points. SIAM J. Numer. Anal. 10 (1973), 582-606. DOI 10.1137/0710052 | MR 0373328
[4] P. Ciarlet: The finite element method for elliptic problems. North-Holland Publishing Company (1978). MR 0520174 | Zbl 0383.65058
[5] C. A. Chandler: Superconvergence for second kind integral equations, Application and Numerical Solution of Integral Equations. Sijthoff, Noordhoff (1980), 103-117. MR 0582986
[6] P. J. Dams: Interpolation and approximation. Blaisdell Publishing Company (1963).
[7] J. Douglas, Jr. T. Dupont: Some superconvergence results for Galerkin methods for the approximate solution of two point boundary problems. Topics in numerical analysis, (1973), 89-92. MR 0366044
[8] J. Douglas, Jr. T. Dupont: Collocation methods for parabolic equations in a single space variable. Lecture Notes in Math. 385 (1974). MR 0483559
[9] T. Dupont: A unified theory of superconvergence for Galerkin methods for two-point boundary value problems. SIAM J. Numer. Anal. vol. 13, no. 3, (1976), 362-368. DOI 10.1137/0713032 | MR 0408256
[10] M. Křížek P. Neittaanmäki: On superconvergence techniques. Acta Appl. Math. 9 (1987), 175-198. DOI 10.1007/BF00047538 | MR 0900263
[11] T. Regińska: Superconvergence of external approximation for two-point boundary problems. Apl. Mat. 32 (1987), pp. 25-36. MR 0879327
[12] G. R. Richter: Superconvergence of piecewise polynomial Galerkin approximations for Fredholm integral equations of the second kind. Numer. Math. 31 (1978), pp. 63-70. DOI 10.1007/BF01396014 | MR 0508588 | Zbl 0427.65091
[13] A. Spence K. S. Thomas: On superconvergence properties of Galerkin's method for compact operator equations. IMA J. Numer. Anal. 3 (1983), pp. 253 - 271. DOI 10.1093/imanum/3.3.253 | MR 0723049
[14] V. Thomée: Spline approximation and difference schemes for the heat equation. The mathematical foundations of finite element method with application to partial differential equations. Academic Press (1972), pp. 711 - 746. MR 0403265
[15] M. Zlámal: Some superconvergence results in the finite element method. Lecture Notes 606, (1977), p. 353-362. DOI 10.1007/BFb0064473 | MR 0488863
Partner of
EuDML logo