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Summary. A pointwise error estimate and an estimate in norm are obtained for a class of
external methods approximating boundary value problems. Dependence of a superconvergence
phenomenon on the external approximation method is studied. In this general framework,
superconvergence at the knot points for piecewise polynomial external methods is established.
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INTRODUCTION

Superconvergence of approximate solutions of differential and integral problems
at the knot points is an interesting property investigated by many authors. Among
other this property was established in [3] and [8] for the collocation method for
solving second order ordinary differential equations and in [7], [9] for the Galerkin
method for solving two-point boundary value problems and the heat equation ([ 14]).
Moreover, superconvergence was proved for the Galerkin method for the Fredholm
integral equation of the second kind (cf. [12], [5], [13]). A superconvergence pheno-
menon for the gradient of the finite element approximate solution was also analysed
(cf. [15]). Extensive references concerning this problem can be found in [10].

It does not follow from the above papers what is the relation between the method
of approximation and the presence of superconvergence. In the present paper a class
of external approximations is investigated. This class, studied in part by Aubin [1],
possesses some computational facilities and therefore is useful in practice. It is shown
how superconvergence depends on the choice of a method from this class. The super-
convergence results are established for a class of external approximations of boundary
value problems for even order ordinary differential equations.

Up to now, a superconvergence result for external approximations was obtained
for a special case of the method only (cf. [11]). In Section 1 this result together
with the known superconvergence result for the Galerkin method [7] are quoted. In
Section 2, a partial approximation convergence is proved. This theorem is based
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on the first Strang lemma ([4], Chap. 4.1) and has a general character. Next, our
considerations are restricted to the case of the boundary value problems for ordinary
differential equations of order 2m and to the external method generated by projections.
The main theorem gives the dependence of a pointwise estimate on ¢ via the Green
function G(t, +) of the operator (—1)" y*™ on Hj. The theorem is formulated in a ge-
neral form in order to be applicable to methods generated by nonorthogonal project-
ions (cf. Section 5). An I? error estimate is also given. In Section 4, on the basis of
this theorem, superconvergence at the knot points is established for approximations
generated by finite element subspaces and orthogonal projections. Some remarks
concerning nonorthogonal projections are included.

1. EXAMPLE

Let us consider the following model problem:
find u € Hy(I) such that

(1.1) (', v') + (bu,v) = (f,0) VveHy(I),

where (-, *) denotes the scalar product in I*(I), I = (0,1). Let b = b, > 0 and
fibe H'(I)(r = 1). Then u € H**'(I). For the approximate solving this problem
let us apply a finite element method generated by the subspaces S,,(H},, r) < Hy
corresponding to a partition A = A(h) = {ih)}_,, h = 1/n. So

SW(Hg, r) = {v e Hy(I)| v|¢x,x1, 1) € Py for x; e A(h)}

where P, denotes the set of polynomials of degree < r. It is known that the solution
uy of the Galerkin equation:
find uy € S,(Hg, r) such that

(1.2) (uf’, vp) + (bug,vy) = (f,v,) Vo, eS,(Hg,r),
approximates u with the error

(13) Ju = uillo + hlw" = w0 = k™ [ul,.s.
Moreover, if r = 2 the rate of convergence increases at the knot points
(1.4) [u(x;) — up(x)| < ch®|uf,+r Vx;eA(h).

This is a superconvergence phenomenon described in [7]. In [11] it was shown that
a similar property takes place also if instead of u¢ we take a solution u,, of the follow-
ing problem:

find u, € S,(Hy, r) such that

(1'5) (u,',, U}'.) + (bq)huh, (Phl’h) = (f, (/)hvh) Vu, € Sh(H(l)’ r) s

where g, is the orthogonal projection of L*(I) onto S)(L*, r — 1). Namely,
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(1.6) ”” - uh”l = Chr(“b”r—1 + ”f”r—-l)
and

[u(x;) = wy(x,)| < ch®(|[b], + |f],) Vx:eA(h).

Moreover, it is known (for (1.6) this was shown in [11]) that on the right hand side
of the above estimates (1.3), (1.4), (1.6) the norms of H"~! and H" can be replaced
by the norms of H, ! and HY, respectively; where

Hy = {ve X(I)| ve H(x;, x;4,) for x; € A}
and

n—-1
“U“AS = (I_ZOHU Iz‘ls(xi.xiﬂ))l/z‘

Evidently, for fe H* we have |f|, = |f]a. Nevertheless, the methods allow
us to obtain the same order of convergence also in the case when b, f ¢ H’(I) but
b, f € H;.(I) (or Hy-'(I)), where A’ is a certain finite set of points contained in the set
A(ho) = {ihe}?25" (hone = 1). In this case we consider such parameters h(= 1/n)
that A(h) o A"

The estimates (1.6) show that the superconvergence phenomenon (1.4) occurs
not only for the Galerkin method but also for its generalization (1.5). In the paper
we show that besides (1.5) there exists a certain class of methods for which the super-
convergence holds.

2. CONVERGENCE

Let Q < R"(d = 1,2,...) be a bounded domain with a Lipschitz boundary.
Let V, = I*(Q) and let V;,..., V,, V be Sobolev spaces such that VC, V;C, V,
for i = 1,..., m. Let a;; be bilinear forms on V; x V, generated by (ordinary or
partial) differential operators /;, I;

aij(u’ U) = (aij[iu’ ljv) Vu € V; , VE V:, ’ Z’J = 0: cey M

where I; € L(V;, I?), I, is the identity operator in I?, and o;; are real functions from
L*(Q).
Let us consider the problem
find u € V such that

(2.1) a(u, v) =

E

a;(u,v) = (f,v) VveV.
ji=0
To seek for an approximate solution of the problem (2.1), consider a family {V,}
of finite dimensional subspaces of V and families {¢,;', i = 0, ..., m of linear maps
of Vinto V,. The parameter h is the defining parameter of the families, h € o, and
its limit is zero. Let us consider the following approximation of the problem (2,1):
find u,, € V, such that
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m

(2-2) Z aij((phiuha (Dhjvh) = (f, (Phovh) Vo, eV,.

ij=0
It is a certain kind of partial approximation of (2.1) (cf. [1]), i.e. a special kind
of external approximation. If @, ..., ¢, are identity operators on V; then (2.2)
becomes a Galerkin equation. Generalized finite element methods introduced and
discussed in [2] are similar to those considered here.
For the investigation of the approximation (2.2), the following notation will be
convenient:

F=1I*%xV, x..xV, withthenorm [i],= (i a7 )7 5
i=0

Fh = {(‘phovha teey (phmvh)7 vy € V;n} 5
o:V->F, ou=(u,..u);

o V> F, o= (ul ..., Opmit)
a:Fx F>R, Vi,oeF a(a,v) =Y a;u,v));

ij=0
apV, x Vy > R, Vug,v,eVy ayuy, v,) = a(wuuy, o)
We assume that
Al — the form a is V-elliptic,
A2 — the space Visisomorphic to the subspace wV of F,
A3 — 3¢ > 0 |lwulp £ c|uly YueV,
A4 — the forms a,, are uniformly V;-elliptic.

Remark 1. If
i) theform a is F-elliptic and
i) 3¢>0 Vu,eV, Yhel clow|r= |u]y
then the assumption A4 is satisfied.
The condition ii) holds, for instance, in the case V,, = Vand ¢,,, = I, since

sl

Let u and u, be solutions of the problems (2.1) and (2.2), respectively. According
to the first Strang Lemma ([4], Th. 4.1.1) there exists a constant ¢ independent of
such that
(2.3) [u = w|y < ¢ {me[Hu — vy + sup |a(vy, wi) — ay(v,, w,)|] +

vheVn WheVh
liwnll =1

+ sup l(f, Wy — Q”h’owh)'} .
wheVh
liwall=1
Estimating the terms appearing on the right-hand side of the above inequality we can

obtain the following result:

v

m-—1
leogay|* = I_Z::O”‘/’hi”hnza + Jlu]p
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Proposition 1. If A1 — A4 are satisfied, then

fu — wy < c[:;.r:tf’;.”u = vlly + (@ = @) ulp + sup |a(wu, (0 — w,)v,)| +

vheVn
[lonll =1
+ sup ](f> v — (/’hovh)l] .
vheVh
llon]| =1

Proof. Due to the definitions of @, w and w,, the following identity holds
a(vy, wy) — ay(v, wy) = a((0 — ) (v, — u), 0w,) +
+ a(wy(v, — u), (0 — o) w,) + a((0 — o) u, ow,) +
(o — @) u, (@ — @) w,) + dlou, (0 — o) w,).
Since I; € L(V;, I?), the form a is bounded. Thus, according to A2— A4, there exists
¢ < o such that
la(vs, wi) — ay(vs, wi)| < |a(ou, (0 — @) wy)| +
+ c|willy e = oally + Jlo — ) ule]

Therefore, Proposition 1 is a consequence of the inequality (2.3).

Remark2. The term a(wu, (0 — w,) w,) can be easily estimated by ¢[[(o — @) w4,
but usually, such an estimate is not good enough to give an apropriate order of
convergence, and a more detailed analysis is desired.

Let us assume that for i = 0, ..., m, ¢@,;: V— V;is a linear projection onto a sub-
space V,; = V; with a domain Dg,; o V which is a subspace of V;. In this case the
following subspaces of I? will be useful for the error evaluation

(2.4) Wy = {ve I?: (v, [w) = 0 Ywe N(¢gy)! ,

where N(p,;) denotes the null space of ¢y;. Let &,(v) denote the distance of v from
W, in 12, ic.

(2.5) ep(v) = inf o — wlo .
weWni
Lemma 1. If @, V-V, i=0,...,m, are projections then for any u,veV

|a(ou, (0 — w,) )| = Cji”(l — @ny) vI}V,i;mos,,j(oc,-jliu).

Proof. Since ¢y; is a projection, we have (1 — @) u € N(¢4;) Yu € Do,;. Thus,
due to the definition of W, for any w,; € W,; we have

(i, L(1 — @p) v) = (25l — wipy I{1 = @) v)
and

m m

a(wu, (0 — w,) v) = ZO _;O(“ijli“ = wips Li(1 = @) ).

i
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Since I; € L(V;, I?), taking the infimum of the right-hand side on Wy, x ... x W, .
.(wyy € Wy;,j =0, ..., m) we get Lemma 1.
To simplify the notation, let us introduce

(2-6) 5}.(”) = inf ”v - Uh”V s Yhi = ”(1 - (Phi)tv;.”l_(v,v,) .

vnheVh

Combining Proposition 1 and Lemma 1, we obtain the main result of this section:

Theorem 1. Let the assumptions A1 — A4 be satisfied. If @9, ..., @4, are projections,
then

m

H“ - uh”V < c{6(u) + ”(a) — ) “"r +ji)')’hji;)3hj(“ijliu) +

+ )’hogho(f )} -

3. POINTWISE ERROR ESTIMATES

This section concerns the approximation (2.2) for ordinary differential problems
only.

Let ko = 0 < ky < ... <k, (k; — integers). Let us consider the prcblem (2.1)
for V.= Hg"(I) (I = (0, 1)) and for the form

m=1 m

(3.1) a(u, v) = (W, p* + 5 3 (o, ;u*, v*)
& e

i=0j=
Let ¥, = Hy(I) and I; = d¥[dx" for j = 0, ..., m . Since ¥, , = V, we can assume
that
@m, = Iy (identity on V).

Thus, the approximate problem (2.2) takes the form
find u, € V, such that

m—-1 m l
(32 (", o) + .Zo jzo(afj(%i“h)(ki)’ (@n0)?) = (1, @uovs) Vo, € V.

We will assume that the matrix of coefficients &(t) := (a;;(1))7;=¢ is such that
(1) + (1) is uniformly positive definite almost everywhere. Since this assumption
implies F-ellipticity of the form a, the forms a, are uniformly V-elliptic (A4) accord-
ing to Remark 1. Adding the assumptions on the uniform boundedness of ¢,;, we get
Al1—A4. So, the method (3.2) is convergent and the error bound is given by Pro-
position 1 or by Theorem 1, provided all ¢,; are projections.

Let us observe that the problems (2.1) and (2.2) can be formulated as follows:
find ueV:a(ou, wv) =(f,v) YveV,

find u, € V,: a(wuy, o,) = (f, opovy) Yo, €V,.
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Putting v = v, in the first equation and subtracting from it the second, we get the
relation

(3.3) (( — u))® o) + b(ou — wuuy, ow,) =
= (f, v, — Quovs) — d(ou, (0 — w,)v,) Vo, eV,,
where
b(a, v) := a(i, o) — (ul™, vim)
for it = (ug, ..., Up), © = (vg, ..., v,,) € F.

hLemma 2. If G(t, x) is the Green function of the operator (— 1) y(3k= o5 Fkm
then

u(t) = w(t) = ((w — w)™, G(t, *) = 0)*) +
+ (f, (1 = @uo) va) — a(wu, (0 = @) v,) — blou — wu,, wv,)
Vte(0,1) Yu,eV,.
Proof. Due to the properties of the Green function,

(7, GEn(r, ) = (= 1) [5yP)(x) G(t, x) dx = y(1) Vye .
Thus, for any v, € V,,,

u(t) = (1) = (4 = 1), (Glt, +) = 0)) + ((u = s, o)
Applying now the relation (3.3), we get Lemma 2.

Lemma 3. If G(t, x) is the Green function of the operator (—1) y2km) oy Fkm
and if y(x) is the solution of the variational equation

(3.4) a(wv, wy,) = b(wv, @ G(t, *)) Vve H",
then for any y, € V,,
b(wu — wuuy, @, G(t, +)) = a(ou — wu,, o, — wy,) +
+ d(ou — ou, (0, — ©) G(1, +)) + a((0 — o) w, (Y, + 6(1, ) +
+ (£, i = @noyn) — a(ou, (0 — @) y) -

Proof. Since the form & is F-elliptic and &, b are bounded, by the Lax-Milgram
theorem there exists a unique solution y/, of (3.4). For v = u — u,, (3.4) implies

Bofu — ) G, -) = ol — 1), o).
Therefore, due to (3.3), for any y, € ¥}, we have
blo(u — w), 0 G(t, +)) = d(ou — o, o, — o) + a(0 — w,) u,, of,) +
+ (fs vn = @nown) — alou, (0 — @) y) .
Combining the above and the identity
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B(wu — wyuy, @, G(t, *)) = a(wu — o, (0, — ©) G(t, ) +
+ (@ — @) up 0 G(t, +)) + bo(u — u,), w G(t, *))
we get Lemma 3.
We are now in position to estimate the error at an arbitrary point t € (0, 1) .
Theorem 2. Let u and u, be solutions of the problem (2.1) with the form (3.1) and
the problem (3.2), respectively. If @y, ..., Pm—1 are projections then

(3.5) lu(t) — w(t)] < c{Cyi(h) 84(u) + Cou(h) (0 — @) ul|p +
+ CL S o) + CL(8) el 1)}
where §,, &, are given by (2.5) and (2.6) and

Culh) = (@ — @) Gl + (@ — @) ¥ [le + 8,(¥)) + /(G)) +

m—1 m

+ z Vhi z Shi(aij((pt + Gr)(k")) >
i=0 j

=0

m—1 m

Cz:(h) = Clr(h) +i;0 j;oﬁhi(aij(([), + G,)(kj)) s

ng(h) = Vhj Cl,(h) + ][(w - w,,) '/’rul’ + H(a) - co,,) Gz“r, j=0,...m—-1,
for Y, and G,(= G(t, -)) defined in Lemma 3 and y,; given by (2.6). If the coefficients
;; are sufficiently regular, namely
we Y, se{0,1,2,..0
then CJ, can be estimated as follows:
Cull) 5 € sup [340) + (@ = @) ] + % 3 sup )

veB,

() Ca0) = ¢f 309 [50) + [(@ = 0 ols] +'F + sup o, (0}

veB,

. m—1
C{ax(h) = cl{;;ui}i?ex[,yhj 5"(”) +u(a) - w;,) v“F] +i=20vh,~vh.- sup Shi(”)} >

veBe
where B, denotes the unit ball in the space Hy" ' ~ pkm~1 for t¢ A(h) and in the
space Hy"* for t e A(h),.

Proof. Due to Lemma 1 and the definition of y,; we have
(37) [a(ou, (@ — o) )| <
m—1 me1
= chO[H(w - o) G'”F + HG’ - U"]“’yhj] 'i;)ﬁhj(aiju(k‘)).
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Similarly,
(3-8) l(f, (1 - (Pho) Ul.)‘ = [”(0) - CUh) Gt”F + i’hollGr - vh”F] Eho(f)~

Moreover,
[((w — u)®, (G, — v,)*)| + |B(ewu — w4y, (G, — vy))| £
< oG = oy [Ju = wly + (0 — @) uls] .
Thus, Lemma 2 and Theorem 1 yield

(59) ) = 0] = cla0) 16, =l + 1(0 = @)l |G, i +
+j§0[”(0) = @) Gl + [G = v Ym-]g%(auu("”)] +

+ [”(w - wh) Gt”F + Vho” G, — Uh”F] Eho(f)} + |B(wu — QplUp, (Uth)l .
To the last term we apply Lemma 3. We have
|ﬁ(a)u — WUy, O, — WY, + (wh - a)) Gt)[ <

< oll(@ — @) vl + Ve = wally + (@ = @) Gelle] Jou = ]

Moreover, by the definition of the spaces W,;, for any w,; € W,; and arbitrary y,ve V
we have

m—1 m

‘E((a) — )y, w”)l = |i;0 j;o((y - (/)hiy)(ki)a fxijv(kj) - whi)l

and thus

m—1 m

a((0> — p) uys )P + G)))| £ ¢ [[(0 — @) uuu;o;;)%(a“(% + G)*) +

m—1 m
+ u - “h“V.ZOYhizehi(“ii(Wt + G}
i= j=0
From Theorem 1, the above estimates and the inequalities (3.7), (3.8) with v, and G,
replaced by y, and y,, we get (cf. Lemma 3)
(3.10)  |b(wu — wuuy, ©,G,)| = ¢{Cy(h) S4(u) + Cal(h)] (0 — ) ullr +

m—1 m

+i;)C’3',(h)j=Zoshj(ociju(’“)) + C3u(h) eno(f)} -

So, (3.9) and (3.10) imply the first part of Theorem 2. The estimates (3.6) follow
from the regularity of , and G,. Indeed,

G e H¥==1 for t¢A
*T Hy for r arbitrary and t € A

and since V¥, is the solution of (3.4),
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" {Hi“mmyf;m““ for 1¢A
t

Hym* s+ for teA.
Moreover, fori =0,...,m — 1,j =0, ..., m, we have
. H3*Y A H"1 for t¢A
. (kj) A A
OClJ(‘pt + G) E{HSA+1 FOI' teA.

Remark 3. Theorem 2 indicates the possibility of superconvergence at the knot
points x; in the case when s = k,, — 1 and V, as well as the ranges of @, ..., Qpm—1
are the spline subspaces corresponding to the partitions A(h).

Repeating the argumentation of the proof of Theorem 2 we can also obtain an I?
error estimate.

Theorem 3. If the assumptions of Theorem 2 are satisfied and o;; € Hy ', A" = A(h),
then

lu = w0 = {Ci(h) 0(w) + Cs(h) (0 — wp) ufr +
m—1 m
+ Y Ci(h) Zoe,,j(oc,-ju(k")) + C3(h) eno(f)}
j=0 i=
and the coefficients C,(h) are estimated by (3.6) with B, replaced by the until ball
B in the space H"'* n H™.
Proof. The argument of the proof of the Aubin-Nitsche lemma yields

u— )l = sup 2@ = 1), 09,
I I sup ol

B

where ¢, € Vis the solution of the equation

a(wv, wp,) = (v, 9) YveV.
Since ,
a(w(u — w,), we,) =
= ((u = w)*, @) + blo(u — uy), w9, — o) + b((w, — o) wy, o),
an argumentation similar to that used in the proof of Theorem 2 yields the expected

estimate. The ball B, is now replaced by B due to the fact that instead of G, and y,,
only the function ¢, € Hz* occurs.

4. SUPERCONVERGENCE

Let us consider the problem (2.1) for the form given by (3.1) and its approximation
(3.4) generated by V, and the projections @, --+» @pm—1, 1.

For application of the abstract results established in the previous section, some
information about the approximation properties of the subspaces W,; is necessary.
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For some special choices of the projections ¢4, a characterization of W), can be
obtained.

Remark 4. If there are u;, € IXI),v = 0, ..., v;, such that

(4.1) N(py) = {ue Doy | (u, pyy) = 0, v = 0,..., v}
then

W, = {veI? | v* espan {;}}L,} -

Indeed, if v e span {u; )3, then (w, v*?) = 0 for w e N(¢y;), and hence v € W,
Let A(h) = {x;}7-0 (x; = ih, h = 1/n) be a uniform partition of I, I; = (x;, X;4,)
and let S,(H*, r), k < r, denote a piecewise polynomial space

S(H* r) = {ve H*| v|;,e P(I}) i = 0,...,n — 1}
Remark 5. If y;, defined in (4.1) are such that
span {p,)Lo = S,(H”, r), then W, > S,(H*"*,r + k;).
Let us now suppose that instead of (4.1) we have
(4.2) N(pw) = {veVi|ov(x,)=0,v=1,..,n =1}, i=1.
Thus the Green formula implies
N(pw) = {veVi|(p,v') =0 VueS, (I} 0),
and for w such that w*:~ ) € S,(I2, 0) we have
(w, v*7) = 0 Vve N(oy) .

Remark 6. Let i > 1. If (4.2) holds then S,(H*" ', k; — 1) = Wy

Finally, let us consider the case when ¢,; is a projection onto Vj; generated by the
form (u®?, ™), namely

(4.3) (pe — w)* 9, 0*9) =0 Voe V.

It is easy to see that for ¢; defined above we have

(4.4) Wi ={well:w=1* veV,],

and moreover,

(45) It = 0u) ol = l(t = 0) ol = cinf o = oy
VhEV hi

for v € Hi' where |+|,, denotes the standard seminorm in H*. For applications it is
enough to find the image ¢,;v of a basis of V.

Let us consider the approximation (3.2) given by (4.3), and the piecewise poly-
nomial spaces

(4.6) I’h = SA(H(’;"', km + S) N I/hi = Sh(Hl(‘)i, k; + S)
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corresponding to the uniform partition A(h) such that A(h) > A’. In this case we have
the following result:

Theorem 4. Let (4.3) and (4.6) hold and let u and u,, be the exact and approximate
solution, respectively. If «;;€ Hy'' and fe HY'', s€{0,1,...}, then

[w = wiy = eb*",

4 = wlo < {chi::’)‘"' for s>k, — 1
ch™® for s<k,—1.
Moreover,
[u(r) — u,(t)] < ch**D for teA(h)

which means that for s > k, — 1 the method possesses the superconvergence
property at the knot points x; € A(h).

Proof. Let Jiv denote the spline interpolant of v from S,(I?, 5) generated by the
knots x;; = x; + jh/(s + 1) j = 0,...,s. From Peano’s kernel theorem it follows

that (cf. Kowalewski’s exact remainder for polynomial interpolation, [6]) for
ve H*(I,)

lo® — Jao® 2y < e+ ) [0® |y -

Since for any v € HY' we have

n—-1
inf o — 0,7, < cinf ¥ [ D"0*0(x) = offO(x)|* dx £
j=0

vheVhi veVh j=
n—1
< % () - RGP dx,
j=0

then for any v € Hy n HX !

4.7) inf o = vy, < e(B**" + B V4], -

vheVhi

This, by (4.5), implies that forany ve V,

l(@ — @) op < (b + B) 04" P ]y,

(4.8) Su(v) < e(r*t + BY) Jo s,

my < (B + HmTR)
Moreover, due to (4.4) we have W,; = S,(I?, s) and -
(4.9) en(v) < (B! + hY) |o]|a, -

By the assumption of regularity of f and a;;, the solution belongs to Hé A Himts+1
So, Theorems 1 and 3 and the estimates (4.8) and (4.9) imply the first part of Theo-
rem 4. Moreover, according to (3.6), C;(h) can be estimated by c(h*"" + p==1y jf
t¢ Aand by ch**'if t e A. Thus, applying Theorem 2 we get the remaining part of
Theorem 4.
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Remark 7. Theorem 4 remains true if the uniform partition A(h) is replaced
by a quasi-uniform one, i.e.
Xip1 — X;
max =L < o
i X1 — X;

5. REMARKS

Superconvergence at the knot points can also take place when non-orthogonal
projections ¢, are applied. Due to the fact than then W, may be a worse approxima-
tion of H' than Vg, it is clear that the existence of the terms y,; in the estimates
(3.6) becomes important. As an example let us take ¢,: Hy(I) » S,(I?, 1) given as
follows:

o ulx) = z; [ [ :“)h% (i) (x = (i + 3) h) + u(t)) dt] . (% - i>,

where (1) is the characteristic function of (0, 1). According to Remark 5, W, o
> S§,(I2, 0). Thus

¢ for t¢ A(h) ch  for t¢A(h)
<
Cailh) = {ch for teA(h); Cui(h), C3/(h) = {ch2 for teA(h),

and by Theorems 1 and 2 |u — u,, < ch while |u(1) — u,(1)|] < ch® for te A(h),
where u and u, are solutions of (1.1) and (1.5), respectively, with ¥V, = S,(Hy, 2)
and ¢, given above.
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Souhrn

ODHAD CHYBY PRO VNEJSI APROXIMACI OBYCEINYCH DIFERENCIALNICH
ROVNIC A VLASTNOST SUPERKONVERGENCE

TEREZA REGINSKA
Autorka odvozuje bodovy odhad chyby a odhad v normé pro jistou tfidu vné&jSich metod
aproximujicich okrajové tulohy a studuje zdvislost vnéj§i aproximaéni metody na jevu super-

konvergence. V tomto obecném ramci je dokdzana superkonvergence v uzlovych bodech pro
bodové polynomidlni externi metody. ’

Pesrome

OLIEHKA OUIMBKY JIs1 BHEITHEUW AITITPOKCUMAIIU OBBLIKHOBEHHBIX
JUPOEPEHIIMANIBHBIX VPABHEHUM U CBOVICTBO CVIIEPCXOANMOCTU

TEREZA REGINSKA
ABTOpOM BBIBEOEHbLI TOYE€4YHAasI OLICHKa omubKu M OLICHKAa B HOPME JIs1 HEKOTOPOIO KJlacca
BHCIIHBIX METOIOB anmnpOKCHMHPYIOIIMX KpacBbIC 3aJa¥yd M H3y4Y€Ha 3aBUCHMOCTH d)eﬂomena

CynepcxoguMoCTH OT MeToda BHEIIHEH annpOKCHMaLyH. B 3tux o6mmx paMKax goxKasaHa cynep-
CXOIMMOCTh B Y3JIOBBIX TOYKaxX MJISI TOYCYHbIX MOJIMHOMAJIBHUX BHEIOHBIX METOIOB.

Author’s address: Dr. Teresa Reginska, Institute of Mathematics Polish Academy of Sciences,
POB 137, 00-950 Warsaw, Poland.
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