[1] J. H. Bramble J. A. Nitsche A. H. Schatz:
Maximum-norm interior estimates for Ritz-Galerkin methods. Math. Соmр. 29 (1975), 677-688.
MR 0398120
[2] P. G. Ciarlet:
The finite element method for elliptic problems. North-Holland, Amsterdam, New York, Oxford, 1978.
MR 0520174 |
Zbl 0383.65058
[3] G. Fichera: Existence theorems in elasticity. Encycl. of Physics, ed. S. Flügge, vol. VIa/2, Springer-Verlag, Berlin, 1972.
[5] P. Grisvard:
Behaviour of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. in: Numerical solution of partial differential equations III, Academic Press, New York, 1976, 207-274.
MR 0466912
[6] P. Grisvard: Boundary value problems in nonsmooth domains. Univ. of Maryland, Dep. of Math., College Park, Lecture Notes 19, 1980.
[7] E. Hewitt K. Stromberg:
Real and abstract analysis. Springer-Verlag, New York, Heidelberg, Berlin, 1975.
MR 0367121
[8] I. Hlaváček M. Křížek:
On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary conditions. Apl. Mat. 32 (1987), 131-154.
MR 0885758
[9] I. Hlaváček M. Křížek:
On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type. Apl. Mat. 32 (1987), 200-213.
MR 0895878
[10] J. Kadlec:
On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set. Czechoslovak Math. J. 14 (1964), 386-393.
MR 0170088 |
Zbl 0166.37703
[11] V. A. Kondratěv:
Boundary problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč. 16 (1967), 209-292.
MR 0226187
[12] M. Moussaoui:
Régularité de la solution d'un problème à derivée oblique. Comptes Rendus Acad. Sci. Paris, 279, sér. A, 25 (1974), 869-872.
MR 0358062 |
Zbl 0293.35014
[13] J. Nečas:
Les méthodes directes en theorie des équations elliptiques. Masson, Paris, or Academia, Prague, 1967.
MR 0227584
[14] J. A. Nitsche A. H. Schatz:
Interior estimate for Ritz-Galerkin methods. Math. Соmр. 28 (1974), 937-958.
MR 0373325
[15] B. Westergren: Interior estimates for elliptic systems of difference equations. (Thesis), Univ. of Göteborg, 1982.
[16] Q. D. Zhu:
Natural inner superconvergence for the finite element method. Proc. China-France Sympos. on Finite Element Methods, Beijing, 1982, Gordon and Breach, Sci. Publ., Inc., New York, 1983, 935-960.
MR 0754041