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ON A SUPERCONVERGENT FINITE ELEMENT SCHEME
FOR ELLIPTIC SYSTEMS
III. OPTIMAL INTERIOR ESTIMATES
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Summary. Second order elliptic systems with boundary conditions of Dirichlet, Neumann’s
or Newton’s type are solved by means of linear finite elements on regular uniform triangulations.
Error estimates of the optimal order O(hz) are proved for the averaged gradient on any fixed
interior subdomain, provided the problem under consideration is regular in a certain sense.
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1. INTRODUCTION

In Parts T and II of the present paper we proved the O(h3/?) error estimate for
averaged gradients of linear finite elements on the approximate domain €, assuming
the H3(Q)-regularity of the exact solution of an elliptic system. One can conjecture
that an interior H3-regularity could be sufficient to derive even better interior
estimates for the averaged gradient on a subdomain Q, of Q if Q, is independent
of h. The present Part III is devoted to the verification of the latter conjecture.

In proving the main Theorem 4.1 of the paper [8_] only an interior estimate for the
norm

“u,, — P"“LQ*,. (Qf cQ,cQ)

was needed. Nevertheless, we employed the global estimate

(L1) luy — Pull; o < CR¥*(Jlull5.0 + [f]2.0)

of Theorem 2.1. Thus a question arises, whether an interior O{h?) estimate can be
deduced instead of (1.1) at least for some suitable “‘regular’ boundary value problems.
In what follows we shall give a positive answer to this question. As a consequence,
we can easily derive an optimal O(h*)-interior estimate for the averaged gradient.
We employ a method of interior estimates, introduced by Nitsche, Schatz and
Bramble in [14], [1] and some ideas of Zhu [16].
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In Section 2 several auxiliary lemmas will be proven. In Section 3 we apply them
to the proof of interior estimates of u, — Pu for the Dirichlet, Neumann and Newton
type boundary value problems, assuming that the problem under consideration is
regular in a certain sense. Finally, we derive O(h®)-interior error estimates for the
averaged gradient in Section 4. Similar results for convex domains were obtained by
Westergren [15] who used a different approach.

Henceforth we shall write Q; = = Q, whenever @, = Q, i = 1,2,.... We keep
the notations of Parts I, I and moreover define

24 i,j=

B(w, v) = ilK,.,. N{(w) N(v) dx ,

where Q, < < Q is a fixed subdomain. For any Q; we set
Wh(Qi) = {ngi | we Wh} >
Vi(Q) ={veW,|suppv c Q;}.

Definition 1.1. We say that the Dirichlet problem with homogeneous boundary
conditions is regular if its weak solution for any right-hand side f € [I?(2)]" belongs
to [H*(Q)]™.

We say that the problem of Neumann’s or Newton’s type P(f, g) is regular if:

(i) it has a unique weak solution u,

(if) ue [HA(Q)]",
(iii) the problem Z(¢,0) has a unique solution u, for any right-hand side ¢ e
e [IX(Q)]™; moreover u, € [H*(Q)]™.

Remark 1.1. For the homogeneous Dirichlet boundary conditions the regularity
of the problem implies

(1.2) lu2e =€

flloa-

To see this let us recall the linear and continuous operator (see [8] for the classical
formulation)

Lu = ( Z ]NTm(Kij Ni(u)))zl:l s
i,j=

which maps [Hg(2) n HX(Q)]" onto [I*(Q)]™ by the regularity of the problem.
Since L is a one-to-one mapping (L maps onto [I*(2)]"), we can employ the Theorem
on Isomorphism (see e.g. [7], p. 216) to obtain that L™! is continuous, i.e. (1.2)
holds.

For the homogeneous boundary conditions of Neumann’s or Newton’s type we
apply the same argument for the operator (cf. (4.4) in [9])

L: V, n [HA(Q)]™ > {fe [IA(2)]"| (f. 9)0,0 = 0 Vg 2}
to verify (1.2).
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Remark 1.2. The regularity of an elliptic problem with a single equation has been
established for bounded domains with piecewise continuously differentiable boundary,
which has no “concave angles” (see e.g. [5], [6], [10], [11], [12]). If the boundary
0Q is infinitely differentiable, the Dirichlet problem with homogeneous boundary
conditions is regular even for general elliptic systems ([13], p. 260, or [3]). Some
sufficient conditions for the regularity of elliptic systems with boundary conditions
of Neumann’s or Newton’s type can be found in [4].

2. AUXILIARY LEMMAS

First of all we shall prove four lemmas, which will be used in the proof of interior
error estimates. Here we follow the ideas of the papers [14], [1] and [16].

Lemma 2.1. Let Q, c = Q; = < Q be arbitrary subdomains and let w € C3(Q,).
Then for any v, w e [H'(Q,)]™

M
B(ww, v) = B(w, ov) + Z ( > (vp,uo z o e '"P>> dx,
=1 q=1
where the coefficients pg”, pi'?, 15* € C3(Q,) are independent of v and W.
Proof. According to [8], Sec. 2, we may write

s = [ % Kl,(z(z:zm et i, ))(E(z

0, bi=1 m=1\t=1 p=1\g=1 xq

dow,, Ov ov
+ nj, | ) dx = y rx;';"-—w"' —24+ Y BPw, 2 +
Q,\m.P,1,4 ax, 6xq m,p,q 0x,

q
+ Zy —v + Y 5"Pw, v)dx,

m,p,t m,p

where the coefficients oy, ..., 6™ are polynomials on Q. Since w € C3°(92), integra-
tion by parts yields

Bloww, v) — B(w, o) =L< 5 a;r;p(a(w_wm)% _%f’_(w"/n)> N

2 \:P51,d 6x, axq 6x, axq
p v d(wv,) mp {(O(0W,) oW,
+ Zﬁq Cowm_‘e_"wm—' + Z'}"p — U, — T @y dx =
m,p,q 6x 6xq m,p,t ax, ax,

q
[ )
0, \M:Pstsq 8xq Bx, 6x, 6xq

-y wmﬂ;""vpazcg + Y wayitv, g——) dx,

m,p,q Xq  mp,t Xt

whence the result as required. g
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Lemma 2.2. Let Qg c = Q, c < Q; c< Q; =< Q and let w, € W,(Q3) be such
that

(2.1) B(w,,n) =0 VpeV)(Q,).
Then for sufficiently small h we have
(2.2) Wil 1,20 < c[Walo,0s -

Proof. Following some ideas of [14] and [1], we assume that @ c < Q* c < Q,
and let w € C3(2*) be such that @ = 1 in Q,. Setting

W:‘ = W,
we get

(2.3) Iwil1.00 = [Wili.. < [Wi — Rwil10, + [RW;] 1, s
where Rw; € V;(2,) is defined in the following way
(2.4) B(w; — Rw;,9) =0 VoeV)(Q,).
Note that Rw;’ is uniquely determined, as
23) W, < C BOwv,w) Yw e [EX(@)]¥
Therefore, the use of (2.5) for w = wj — Rwj and (2.4) yields
W = R 5 ClwE — R culwd =l Ve VE(22).

Thus applying the Leibniz rule on any Te 7, T Q, + 0, we obtain

(2.6) [wi' = Rwi [0, = CH2 2 [Wilzr < CH Wil »
where
ﬁz = U Ta
Tn22¥ 3

as wy, is linear on every triangle T.

We estimate now the last term in (2.3). For Rw; # 0 we obtain by (2.5) and (2.4)

(2'7) "Rw:“ 1,22 é CB(RWIT’ 'p) = CB(WIT’ 'l’) s
where
Rw}
'l’ — h
“RW: " 1,8,
so that
(28) H'llﬂl.ﬁz =1.

Using Lemma 2.1 we arrive at
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M M
Bwi,¥) = Bwi,y?) + | % w,,,h( 5 (%ﬂ"’" + W o W, >> dx —
QM=

6x1 6x2
= B(w,, ¥*) + I,

where Y* = oy, and u!” € CJ(Q,) are independent of w, and y. Then employing
the assumption (2.1), we find that

B(wy,¥) = B(w,, y* — ) + 1 Ve V)(Q,).

From the definition of I and (2.8) it follows that

B(wy', ¥) = C[wi 10, [¥* = 11,0, + C'[|W]o.q, ,
B(wy, ) = C(h|wy|1.0, + [Wilo.2)) -

Hence, by (2.7), (2.3) and (2.6) we get

[will1.00 = C(h[ Wil 1.0, + [Wallo.2.) = C'[Willoa, »
as follows from the Inverse Inequality (see [2], p. 142).

In proving the next lemma, we cannot use the well-known result, following from
Aubin-Nitsche trick (see e.g. [2]) directly, since we have a slightly different definition
of the interpolation operator P in some triangles adjacent to the boundary. Let us
introduce an “ideal” approximation of the homogeneous Dirichlet problem as
follows:

upeV,, a(ug,v,) = (fvi)oga YVieV,.
(Note that in [8]—(2.49) the integral on the right-hand side is evaluated only

approximately. )

Lemma 2.3. Let Q € 4%(d) be convex and let the Dirichlet problem be regular.
Then if fe [IZ(Q)]™ and 1 = 0,
(29) Jlu = utlo0 = Ch*[u]20
holds for sufficiently small h.
Proof. We easily derive that
(2.10) alu —uh,v,) =0 Vv,eV,,
(2.11) u—uleV,
Define the adjoint problem:
find v € V¥ such that

(2.12) a(v,9) = (u — ul, @)oo VoeV.
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Using (2.10), (2.11) and (2.12), we come to
@13 o= R = au - dhv) = au— dhyv — PY) =

SCllu—upfio|v—Pvlie.

Further we show that

(2.14) [v — Pv|, 0 < Chlv|,0 Vve[HyQ)n H¥(Q)]™.
Obviously,
(2.15) lv = Pvlie=]v—Pv[io + Zlv=Plir.

where T, are segments adjacent to the curved parts of 0Q. However,

210 o = Pol s, = ki, S ki

where Q° is a boundary strip, the width of which is ¢ < Ch?*(see (Hl) in [8]). Applying
Iljin’s inequality (see (2.31) in [8]), we get

(2.17) [onlt.00 = Celloul3.0 = Cih*|on].0-

Now, the combination of (2.16),(2.17) and (2.15) together with the standard estimate
on @, leads to (2.14).

From the regularity of the problem we have u e [H*(Q)]". Next, we derive the
estimate

(2.13) lu = ut]li0 = Chlul,.
In fact, the relations (2.10) and (2.11) give
Cllu — up||f o < a(u — uf, u — uf) =

= a(u— up, u — Pu)

I\

Ciflu = uifl0[lu = Pulyq
and thus referring to (2.14), we get

Jlu = ut]i.0 = Clu = Puly o < Cihfufq.
Substituting (2.18) and (2.14) into the inequality (2.13), we obtain
(2.19) lu = ut]5.0 = Ch?[lu]2q]v]:2.0-
As the problem is regular,

V20 = Clu = utfo.0,

which together with (2.19) implies (2.9).

Note that in case of non-convex £, we are able to prove (2.14) only for
ve(H (Q)M.

In the next lemma the type of boundary conditions is not specified. A similar
lemma has been proved also in [16].
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Lemma 2.4. Let Q be a bounded domain with a Lipschitz boundary and let
Q, cc Q, c < Q, where Q, is a convex domain with the boundary of the class €.
Assume that u|q € [H*(Q,)]" and that the following “interior Galerkin equation”

(2.20) B(u — up,v) =0 WeV)(Q,)
is fulfiled. Then for sufficiently small h

45— Pula, S CH]ula, + [0 = thlo)
where Q4 is an arbitrary domain such that Q, cc Q, c < Q,.

Proof. Let us choose @y c= Q, cc Q, c<= Q, and a function we CP(2s)
such that
wo=1 in Q,,

and let us put u* = wu. Suppose that u*” e V,(Q,) satisfies
(2.21) a(u* — u* v) =0 WeV(Q).

Here V,(2,) is the space of finite elements on Q,, defined likewise V, on . Let
PL: [V(Q)) n C(2))]* - V,(2,) be the corresponding interpolation mapping. From
the V-ellipticity of a(s, +), from the fact that u** — P'u* e V,(Q,) and since any
function of V,(£,) can be extended by zero to an element of V, we obtain

(2.22) Cllu*" — P'u*|? ; < a(u*h — P'u*, u*" — P'u*) =

= a(u* — Plu*, u*" — Plu¥) = B(u* — Plu*, u* — Plu¥).
Moreover, for every v € V(%) it is
(2.23) [B(u* — P'u*,v)| < Ch?|u*||5 0, |¥]1.a-

This inequality follows from some parts of the proof of Lemma 2.1 in [8], where
the terms a,, a, were estimated. The support supp (P'u) can be covered by a set,
which is the union of the congruent parallelograms 4,, i.e.

supp (P'u*) = U4, = Q.
‘
Then S,, = 0, since u* — P'u* = 0 outside the union, and thus (2.23) is valid.
Taking v = u*" — P'u* in (2.23), we find from (2.22) that

(2.24) Jus® — Pru*|, o < Ch?|u*|s g, < Cih*u]s g, -
Further we prove that

B(uf — u*, ) =0 VoeV)(Q,).
As V(2,) = V,(Q,), we obtain by (2.21) that

B(u* — v v) =0 VWveV)(Q).
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Hence, setting

and using the assumption (2.20), we find that
Bw — w,,v) = B(u — u*) — (uf — u*"),v) =0 VYveV)(Q,).
Consequently,
B(w,, @) = B(w,9) =0 VoeV)(Q,) = V)(Q,),

since supp w = Q — Q,. Now the assumptions of Lemma 2.2 are fulfilled and thus
by (2.2)

(225) [lug — w10, < Cllut — u**o,0, < C(lu* — uG|o.0, + [u* — u™o,a,)-
Using Lemma 2.3 for the convex domain Q,, we have by the definition (2.21)
(2.26) [u* — u*]o.q £ Ch?||u*|, q, -

Note that the Dirichlet problem is regular due to the smoothness of the boundary
09, (see [3], p. 370; [13], p. 260). As

”u*uk,g < C“"Hk,m for k=0,1,2,3,
the use of (2.26) and (2.25) yields
(227) lug = u*] 1,0, < C(Ju — ui[o,0, + B*[u]2,0,) -
Finally, the combination of (2.24) and (2.27) implies
lus — Pulls00 < Jus — u*]s 00 + u** — Pul; o, <

< C(h?|u]s.0, + Ju — ui]o.q,) s

since Plu=Puon Q, u

3. INTERIOR ESTIMATES

In this section we apply the previous auxiliary lemmas to the proof of the interior
error estimates for u" — Pu. Again, we have to distinguish Dirichlet’s problem and
the problems of Neumann’s or Newton’s type.

Theorem 3.1. Let Qe %3(d) be a bounded convex domain and let Q, = < Q.
Let a regular Dirichlet problem with fe[H*(Q)[™ and @ = 0 be given on Q.
Then a subdomain Q, exists such that Q, c < Q, =« < Q and for sufficiently
small h

[v" = Pulls0, = CH*([f]2,0 + [u]s.0) -

283



Proof. As ufy — u”€V,, we have by [8], Lemma 2.2, that
Cillug — e[} o < a(uf — u", u — u*) =
= (ful = oo — (ful — )0 = CHf20 U6 — o1,
that is

(3.1) Jus — u"]i.0 = CR?[f]l2,0-
Let us define

I
=UK
i=1

where K; and K; are open circles such that K; c = K; c = Q and

Q)
o~
=

o ©
i

i
1

Since u — ug satisfies the “interior equation” (2.20) on K; and uly, € [H3(K o1,
Lemma 2.4 holds on every K, i.e.,

Juo — Pulie, = Ch*[uls k, + o = uto,0) = CH([ulls , + [u]2.0)

where the last inequality follows from Lemma 2.3. Consequently,
(32)  Jub ~ Pulfi, = X [lus ~ Pulie, = CHQ ulsn, + [ulz.0) -
Now the combination of (3.1) and (3.2) leads to
Ju" = Pully g, < [u" — ut]1,0, + [ub — Puli0, <
< Ch([flz0 + X [uls + ulz0) -

Employing finally the regularity of the Dirichlet problem, we arrive at the estimate
to be proved.

Next we prove an analogue of Theorem 3.1 for regular Newton’s or Neumann’s
boundary value problems even in case of non-convex domains. We introduce the
definitions of the solutions u, u’y and u*:

(3.3) ueW, (0v)=(fV)oe+ (g&V)owm YWeW,
(3-4) uge W,, ((“’6, Vh)) = (f: Vh)o,n + (g Vh)o,m v, e W,,
u"e W,, ((“h, Vh)) = (f, Vh)g,n,. + (g, Vio,oo YV,EW,,

where ((u, v)) = a(u, v) + b(u, v) is introduced in [9], Sec. 2, and (f, v;)5 0, W, have
been defined in [8], Sec. 2; (W, = (W,)). First we prove an auxiliary lemma which
is similar to Lemma 2.3.
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Lemma 3.1. Let Q € 43(d) and let the problem (3.3) be regular. Then for suf-
ficiently small h it is

Ju = o = Clul .
Proof. According to (3.3) and (3.4),
(3.5) (u—uh,v,)) =0 Vv,eW,.

Define the adjoint problem with the right-hand side v — uf, and with the homo-
geneous Newton or Neumann conditions on 99, i.e., we look for v e W such that

(3.6) ((v,2)) = (u—uh,z)go VZEW.
Hence, by (3.6) we obtain
(3.7) u—ubls.c=((u—ulv).

Referring to (3.5), we come to
(38)  ((u—ul,v))=((u—uh,v—Pv)<Clu—upfo]v—Pv|iag.
(Recall that the operator P has been defined in [9], Sec. 2). However,
(9 w = Pl S Chlwlso vwe @],
since for the single components w,, we have (we drop the subscript m)
b= ol = 3 = Polin, + X b~ ol + 3 - P
The first and second sum can be estimated as in the proof of Lemma 2.1 of [9] (the
relations (2.5) and (2.6)). Thus e.g. for the first sum we get the bound
Ch* TZ |Ew|3 7, £ C{R*|Ew|3 &5 < Coh*|w

2
2,2

2,0 =

where T, is a triangle of Fig. 2 in [9] and Ew is the Calderon extension of w to &,
Q < < Q. Similarly we estimate the second sum with the help of (2.6) in [9] and the
third sum has the standard estimation. Hence, (3.9) holds.

From the coercitivity of the bilinear form ((-, +)) and (3.5) we obtain

Ju — u'%“fo < C((u — up, u — Pu)) < Cl““ - u'(')“l’Q [u = Pul, q.

Utilizing further (3.9) and the regularity of the problem (3.3), we get

(3.10) [u— ub|i0 < Chlul,,.
On the basis of (3.9), (3.10) and (3.8), we find by (3.7) that
(3.11) Ju— ug)5,0 = CH|ul0v]2.0-

Using the regularity of the adjoint problem and Remark 1.1, we deduce

V20 = Clu = ubfoe-

Consequently, the lemma follows immediately from (3.11). 4




Theorem 3.2. Let Q € ¢°(d) be a bounded domain and let the problem (3.3) be
regular. If fe [H*(Q)]™ and Q, = = Q, then a subdomain Q, exists such that
Q, c < Q, =< Q and for sufficiently small h

lu* — Pul1,0, = CH([[f[ 2.0 + [u]2.0 + [u]s.0)) -
Proof. By Lemma 2.2 in [9] we have

Clluy — v

[t.0 = (g — v, ug — u")) =

= (fa Ug - uh)o,ﬂ - (f’ up — "h);sz,, = Chz”f“z,g ”u'(') - uhul,n >
and thus
(G12) Jlut — vl 1.0 < Ch*[f]2,0-

Consider the same set of circles K;, K; as in the proof of Theorem 3.1. Since u and uf,
satisfy the “interior Galerkin equation” (2.20), Lemma 2.4 holds for every K, i.e.,

lus — Pulie, = C(h*[uls k. + [u = wt]o0) = Ch(Julls &, + Jul2.0)

where the last inequality follows from Lemma 3.2. Consequently,
(3.13)  [ub — Puf o, = ¥ luo — Puli g, = ChY(E Juli, + Jul.0)-
Gathering (3.12) and (3.13), we derive

[u" — Pul; o, < [Ju" — ug|s 0, + [us — Pul; o, =

< OW([flaa + 2 ol + [l20) -

4. INTERIOR SUPERCONVERGENCE

By a slight modification of the argument used in Section 4 of [8], we can prove
an optimal O(h?)-interior estimate for the averaged gradient. We use the same nota-
tion as in [8].

Theorem 4.1. Let Q € €3(d) be a bounded convex domain. Let a regular Dirichlet
problem with fe [H*(Q)]™ and i = 0 be given on Q. Let Q, = < Q be an arbitrary
subdomain. Then a subdomain Q, exists such that Q, c < Q, c < Q and

Ju
_— = gh(uh)

< Ch¥(|[f] 2.0 + [uls.0,)
0x

0,20

holds for h small enough.
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Proof. We may write

ou

— — Gy(u,)

(4.1) =

M
< Y lerad u; — Gyup)o.00 =
0,20 J=1

M

< zl(ugrad u; — Gy(Puj)|o.0, + [Gu(Pu; — w)lo.00) -

j=

Let Q' be a subdomain such that
QccQ ccQ,

and let Q;, be the smallest union of triangles T'e 7 such that Q, is contained in it,
ie.,
Qo< Q.
Obviously, we have
Q= @'
for sufficiently small h.
Following the proof of Theorem 3.1 of [8], we obtain

(4.2) lerad u; — Gy(Puj)|o,0, < |grad u; — Gu(Puj)|o gu <

h0 —
< Ch?|ujls,qn, < Ch?lus 0. »
where

Q= U D(T)

T<=Q%*o0
is the union of all “neighbourhoods” D(T) (cf. (3.2) in [8]) and therefore

Q=
holds for sufficiently small h.
Arguing as in the proof of Theorem 4.1 of [8], we deduce

(4.3) [Gu(Pu; — up)]o,00 < [Gi(Pu; — tjn)]o.0m <
< 313 [ Pu; = uplli0m, = 313 [Py — up; g
Let us apply Theorem 3.1 to get the estimate
(44 [Pu — wfs.ar < CH(Iflna + [laca)

where Q, > > Q'is the finite union of circles, constructed as in the proof of Theorem
3.1.

Combining (4.3) and (4.4), we obtain

(4.5) jé 1Gi(Pu; — up)llo.00 < Cil[Pu — w1 o0 < Ch(|f]l2,0 + |ulls.0,) -
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Inserting (4.2) and (4.5) into (4.1), we arrive at

= Chz(”f”z,rz + ”uns,m)- =

0,20

Theorem 4.2. Let Q € 43(d) and let a regular Neumann or Newton boundary
value problem with fe[H*(Q)]™ be given on Q. Let Q, = = Q be an arbitrary
subdomain. Then a subdomain Q, exists such that Q, «c< Q, << Q and

— — G

P < Ch([fla0 + [ulls,e, + [ul2.0)

0,20

holds for h small enough.

Proof. The proof is the same as that of Theorem 4.1 with the only change:
instead of Theorem 3.1 we apply Theorem 3.2.
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Souhrn

O JEDNOM SUPERKONVERGENTNIM SCHEMATU
V METODE KONECNYCH PRVKU PRO ELIPTICKE SYSTEMY
1II. OPTIMALNI VNITRNI ODHADY

IvaN HLAVACEK, MicHAL KRiZEK

Systémy eliptickych rovnic 2. ¥fadu s okrajovymi podminkami Dirichletova, Neumannova
nebo Newtonova typu se Fesi pomoci linearnich koneénych prvka na regularnich a pravidelnych
triangulacich. Odvozuji se optimalni odhady chyby ¥adu O(h?) pro tzv. zpramdrovany gradient
na kaZdé pevné vnitfni podoblasti za predpokladu, Ze¢ uvaZovany problém je v jistém smyslu
regularni. Clanek je pfimym pokraovanim praci [8, 9], kde jsou odvozeny globalni odhady
chyby ¥adu O(#3/2).

Pesome

OB OJIHOM CYMEPCXOJAMEMCSA CXEME METOIJA KOHEYHbBIX
BJIEMEHTOB IJI DJUIMIITUYECKUX CUCTEM
III. OIITUMAJIBHBIE BHYTPEHHUE OIIEHKHA

IVvAN HLAVACEK, MicHAL KRiZEK

CHCTeMBI 3UIMNTHYECKUX YPABHEHHH 2-TO HOpPsAKA C FPAHMYHBIMHU YCIOBHSIMH Tvna J{upuxie,
Heitmana wiiin HbIOTOHA PeLIaloTCs IPH TOMOIIH JIMHEHHBIX KOHEYHBIX 3JIEMEHTOB Ha PEryJIAPHBIX
OJ{HOPO/HBIX TPUAHTYIISIUSX. ITONyuatoTCs ONTHMAITBHBIE OLIEHKH ommuGoK mopsiaka O(h?) mist Tak
Ha3bIBACMOTO OCPEJHEHHOTO TpajJMeHTa Ha Kax/J0il (MKCHpOBAaHHON BHYTpeHHe#l monobiactu
TPH NIPEeIIOJIOKEHHH, YTO PAcCMaTpUBaeMasi pobrema sIBIISETCS PEryISpHON B HEKOTOPOM CMBICIIE.
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