[1] S. Agmon A. Douglis L. Nirenberg:
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17 (1964), 35-92.
DOI 10.1002/cpa.3160170104 |
MR 0162050
[2] A. B. Andreev:
Superconvergence of the gradient for linear triangle elements for elliptic and parabolic equations. C. R. Acad. Bulgare Sci. 37 (1984), 293 - 296.
MR 0758156 |
Zbl 0575.65106
[3] I. Babuška A. Miller: The post-processing technique in the finite element method. Parts I-III, Internat. J. Numer. Methods Engrg. 20 (1984), 1085-1109, 1111-1129.
[4] C. M. Chen:
Optimal points of the stresses for triangular linear element. Numer. Math. J. Chinese Univ. 2 (1980), 12-20.
MR 0619174 |
Zbl 0534.73057
[5] C. M. Chen:
$W^{1,\infty}$-interior estimates for finite element method on regular mesh. J. Comput. Math. 3 (1985), 1-7.
MR 0815405 |
Zbl 0603.34024
[6] P. G. Ciarlet:
The finite element method for elliptic problems. North-Holland, Amsterdam, New York, Oxford, 1978.
MR 0520174 |
Zbl 0383.65058
[7] I. Hlaváček M. Hlaváček:
On the existence and uniqueness of solutions and some variational principles in linear theories of elasticity with couple-stresses. Apl. Mat. 14 (1969), 387-410.
MR 0250537
[8] V. P. Iljin: Svojstva někotorych klassov differenciruemych funkcij mnogich peremennych, zadannych v n-mernoj oblasti. Trudy Mat. Inst. Steklov. 66 (1962), 227-363.
[9] M. Křížek P. Neittaanmäki:
Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math. 45 (1984), 105-116.
DOI 10.1007/BF01379664 |
MR 0761883
[10] M. Křížek P. Neittaanmäki:
On Superconvergence techniques. Preprint n. 34, Univ. of Jyväskylä, 1984, 1 - 43 (to appear in Acta Appl. Math.).
MR 0900263
[12] Q. Lin J. Ch. Xu:
Linear finite elements with high accuracy. J. Comput. Math. 3 (1985), 115-133.
MR 0854355 |
Zbl 0577.65094
[14] L. A. Oganesjan V. J. Rivkind L. A. Ruchovec: Variational-difference methods for the solution of elliptic equations. Part I. (Proc. Sem., Issue 5, Vilnius, 1973), Inst. of Phys. and Math., Vilnius, 1973, 3-389.
[15] L. A. Oganesjan L. A. Ruchovec:
An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional regions with smooth boundary. Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102-1120.
MR 0295599
[16] L. A. Oganesjan L. A. Ruchovec: Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armjanskoi SSR, Jerevan, 1979.
[17] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
MR 0227584
[19] J. Nečas I. Hlaváček:
Mathematical theory of elastic and elasto-plastic bodies: an introduction. Elsevier, Amsterdam, Oxford, New York, 1981.
MR 0600655
[20] V. Thomée:
High order local approximations to derivatives in the finite element method. Math. Соmр. 31 (1977), 652-660.
MR 0438664
[21] B. Westergren: Interior estimates for elliptic systems of difference equations. (Thesis). Univ. of Goteborg, 1982.
[22] Q. D. Zhu:
Natural inner Superconvergence for the finite element method. (Proc. China-France Sympos. on the Finite Element method, Beijing, 1982), Science Press, Beijing, Gordon and Breach, New York, 1983, 935-960.
MR 0754041
[23] M. Zlámal:
Superconvergence and reduced integration in the finite element method. Math. Соmр. 32 (1978), 663-685.
MR 0495027