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ON A SUPERCONVERGENT FINITE ELEMENT SCHEME
FOR ELLIPTIC SYSTEMS

I. DIRICHLET BOUNDARY CONDITION

IvaN HLAVACEK, Mi1cHAL KRiZEK

(Received July 5, 1985)

Summary. Second order elliptic systems with Dirichlet boundary conditions are solved by
means of affine finite elements on regular uniform triangulations. A simple averaging scheme is
proposed, which implies a superconvergence of the gradient. For domains with enough smooth
boundary, a global estimate O(h3/?) is proved in the L2-norm. For a class of polygonal domains
the global estimate O(hz) can be proven.

Keywords: finite elements, superconvergence, post-processing, averaged gradient, elliptic
systems
AMS Subject classification: 65 N 30, 73 C 99.

1. INTRODUCTION

In this article we deal with a system of linear second order elliptic equations with
Dirichlet boundary conditions in a bounded plane domain. A simple averaging
scheme guaranteeing a superconvergence of the derivatives of the Galerkin solution
based on linear finite elements is presented. The article can be considered as a conti-
nuation of [9], where a local superconvergence for the Poisson equation has been
analyzed. To the authors’ knowledge, no superconvergence analysis has been pub-
lished for systems of elliptic equations until now (except for [21] and a short note
in [4]).

The elliptic systems considered here include Lamé’s equations of linear aniso-
tropic elasticity, the model of Cosserat continuum [7], and the standard Poisson
equation with non-homogeneous boundary conditions.

In Section 2, we show that u, — Pu vanishes faster in the H'-norm than u — u,
or u — Pu, where u,, is the Galerkin approximation of the solution u, and Pu is the
linear interpolation of u over uniform triangular meshes. An analogous phenomenon
has been observed [2,4,5, 11, 12, 14, 15, 16, 22] for the Poisson equation when
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employing linear triangular elements over uniform (quasiuniform or piecewise
uniform) triangulations. In Section 3, an avaraged gradient (based on averaging
at nodes) is introduced for linear elements, and its approximation properties in the
I?-norm are derived. In Section 4, we combine the results of Sections 2 and 3 to obtain
a global superconvergence estimate for the derivatives of u. Let us mention that
the result of Section 2 can be used also for other averaging techniques at centroids
or midpoints of sides, which were introduced in [4, 5, 11, 12]. Other important
papers on post-processing with a superconvergence of the gradient include [3, 13,
20, 23] etc., see also the survey paper [10].

2. SOME LEMMAS FOR ELLIPTIC SECOND ORDER SYSTEMS
AND NUMERICAL INTEGRATION

We shall consider a bounded domain Q = R? with a Lipschitz boundary Q.
For the Euclidean norm in R* we adopt the notation |- |. Let us denote by H*(Q) =
= W**(Q), k = 0, 1, ..., the standard Sobolev spaces with the norm |||, o, and the
seminorm |+], o of all the derivatives of k-th order. We also set

.

(V)0 = '[ f.vdx, f,ve (IZ(Q), .
2

where M = 1 is a given integer, and we write for brevity
W = (H'(Q)".
Assume that the following functions are given:
ieW,fe(IX(Q))M,

a matrix K(x) of the type » x x with entries K;; € P(Q) (i.e. polynomials of at most
s-th order) for all i, j € {1, . %} and some integer s = 0, Kis symmetric and positive
definite uniformly with respect to x € Q, coefficients n;,, iy €R, 1 S i <%, 1 <
<mZ M, t=1,2. We consider the system of operators

il 0

2

v .

Ni(v)zz znimt m+nimvm ’ VEW, 1§l§%,
m=1 \t=1 ax,

and the bilinear form
a(u, v) = j Y, K;j N(u) Nj(v) dx.
Qij=1 .

Assume that the system {N(v)}7_, is coercive on the space W, i.e. a constant ¢ > 0
exists such that

LIV + a2 clvlie wew.
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We define the space of test functions

V={veW]|y =0 on 0Q}
(where y denotes the trace operator) and the problem to find u € # + V such that
(2.1) a(u,v) = (f,v)g0 VveV.

Let us derive the classical formulation of the boundary value problem (2.1). To
this end we write

i) = 3 N o)

m=1

where

2 v
m
me(vm) = Z njmt — + njmvm .
t=1 (7)(7,

It is easy to deduce that (2.1) leads to the system

YN (Ki;N{uw)=f,, m=1..,M,

i,j=
in the domain Q, where
2 ow
Ni(W) = = 3 Hjy—— + njuW
=1 0x

t
is the operator formally adjoint to N,

Remark 2.1. The following theorem holds (see [18], Th. 3.2). Let us put
2
N=Ynu,&, 15is<x, 1Ssms<M.
t=1

The system {N(v)}7_, is coercive on W if and only if the rank of the matrix (N,¢)
equals M for all non-zero vectors & from the complex two-dimensional space.

Example. Let us consider the two-dimensional theory of an elastic non-homoge-
neous anisotropic body. We define » = 3, M = 2,

v ov
Ny(v) = e14(v) = —, Ny(v) = e50(v) = 2,
0x 0x,
‘Ov v
Ny(v) = \/(2) e1alv) = <__1 + J)/\/z,
6x2 axl
C1111 sym.
K =¢34 C2222 s

01211/\/2 012221\/2 2¢1212
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2
0;j = Z CijmiCmk » i’j = 15 2 s

m,k=
holds for the stress components. Assume that

Coukij = Cjimk = Cijmr € Ps(Q) > S

v

0,

and a positive constant ¢, exists such that
2

(22) Y Cijmi(X) Eijfmx Z Co

i,j,mk=1 i,j=1

2
&

MN

holds for all symmetric matrices (¢;;) and all x € Q.
It is readily seen that

) SEN@NG = 5 el uls).

i,j=1 sm k=

SNI) = j}z_;lsgj(v) .

i,j=

%

By virtue of (2.2), (2.3), the matrix K is uniformly positive definite. Using the theorem
of Remark 2.1, one can prove that the system {N(v)}>., is coercive on W. -
Moreover, we define the subspace

2 = (V| L[N0 =0}

Let 2 = {0} (i.e. £ reduces to the zero element). Then the following inequality
of Korn’s type) holds for allve V:
f Korn’ holds for allveV

(2:4) ) 2 00 X N0 2 ealvlio

(For the proof see e.e. [19], Lemma 11.3.2).

Henceforth we restrict ourselves to a certain subclass of domains with a Lipschitz
boundary.
We say that Q belongs to the class #3(d) if:

(i) the boundary dQ is 3-times continuously differentiable;

(ii) a positive constant d exists such that all circles, with radius d, which are
tangential to 02, have no other common points with 0Q;

(iii) @Q is bounded.

Henceforth h will denote a positive small parameter, tending to zero and all
constants C, C; are positive, independent of h.

There exist polygonal approximations @, of Q € (63(01) such that @, = Q,

(H1) max dist (x, 0Q) < Ch?

xXe0y
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and the sides of 0Q, are not longer than h. The sides of 9<, are chords or tangents
of convex or of concave arcs, respectively. The points of inflexion of dQ coincide with
a vertex of 0Q,.

We consider triangulations 7, of Q,, consisting of

(a) a regular part 7, generated by uniform parallelograms and carving a domain
Q; (so that the sides of 0Q;" are parallel with at most 3 different directions indepen-
dent of h) — see Fig. 2.1, and such that

diamT=h VTeJy

(T denotes any (closed) triangle of the triangulation). The boundary Q; does not
contain any tangent to 0Q.

(b) an irregular part 7 carving the set Q, — @ and such that

max diam T < h.
TeT i

Assume that 7 is “maximal” in the following sense:

(H2) max dist (x, 0Q;) < 2h.

Xe0n

Finally, assume that the family M = {7}, h > 0, 7, = T U T}, is strongly

regular in the standard sense, i.e. constants C,, C, exist such that:
(i) all angles of all triangles in {7} are greater or equal to C;,
(ii) the ratio of the lengths of any two sides in any 7, € M is not less than C,.

V] N \VA AV AV N AV] AV

INININININNANN

AVAVAVAVAVAVAVAVAN
YANANVAVAVAVAVAVNAV

200 W

th

a2 Fig. 2.1.

A constant regular 2 x 2 matrix exists such that
Tw=FT3), Ty =FT,°), T,=FI)),
where the mapping F: R? — R? is determined by the matrix &,
x=FX+x), x=(x,%), X=(X,X,)),
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and 7, is generated by a uniform square mesh of step-size h. Here x{ € R? may
depend on h whereas & is independent of h. We shall write

Q=FQ), Q =F9,), oF°=FY92).

Denote by T,, T, = Q — Q, the segments adjacent to the chords and tangents,
respectively. We define the space

W, = {ve H(Q) | v|r € P|(T) VTeT,,
v|r, € Py(T.), v|r, € Py(T,) VT, T, = @ — Q,}
and the interpolation mapping P: H(Q) n C(2) — W, by the relations:
Pu(x) = u(x) atallnodes xe@,,
Pu(x) = u(y) atall nodes of 0Q,,

where y is the point of dQ nearest to x, Pu/dt = 0in Q — @, where the direction ¢

is parallel with xy in parts adjacent to tangent segments and perpendicular to chords

in parts adjacent to the latter. Let Pu = (Puy, ..., Puy) for ue Wn (C(Q))™.
Finally let us define

Vi ={veV|vle(P(T)" VTe T, v=0in Q — Q,}.

Note that ¥, = P(V n (C(2))™).

To analyze the approximate solution (cf. (2.49)), we shall need the three following
lemmas.

Lemma 2.1. Let Q belong to the class °(d), u e (H*(Q))™, v e V,. Then
(2:5) |a(Pu — u,v)] = Ch*2|ul 50 [v] 10
holds for sufficiently small h.

Proof. Given any function ¢(x) in Q, we define

?°(X) = o(FX + x;)

Then we may write for all j = 1, ..., %,

M 2 2 600 L
N0 =3, (S, T #it + mah) = N6°) =

i

M (1} 0
=Y (b2 Oon b§D) L b ) s
X, X,

where b = const., r = 1,2, m = 1, ..., M. Defining

e=u—Pu,
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we have

a(e,v) = f Y, K N{(e®) Nj(v°) |det # |dx =
Qoi,j=1
M »
20 4,j=1

M %
ol
+ Kij N{(e°) b33 |det 7| S
lllzljﬂnijzl ! ( ) g 'e laXZdX+
M
z Z K3; N7(€°) nj,v5|det Z|dX =a, + a, + a; .

Let us consider the term a,. Since v,, is linear in any triangle Te 7, dv /(’3X1 €
€ Po(T°). We may write

M
(2:6) a; =Y (S, + Sn),
m=1
where
(2.7) KZ o bS,) |det 0‘]J. 0 NY(e%) d
o t=1 6X1 Atoz; 1
(2.8) Sy = Z o, Y, bly)|det F |f K N{(e%) dx ,
k=1 6X1 B O i _] 1

A{ are parallelograms with a diagonal parallel with the X -axis (see Fig. 2.2),
A =TYu TS,

TY, TS e Ty and BleT » are the remaining triangles.

0
Tk

]

t L3

XO *

o}
T K
Fig. 2.2.
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Note that the continuity of b5, implies that dv,/0X , is constant in every parallelo-
gram A°. Let Gy denote the centroid of Ty, and LI the centroid of A_.
We decompose S,, as follows:

(2.9) Sy = Sus + Smz + Sus >
where
K4 a M
Spy =Y —m me|mmmwﬂw+Mwmg
t=1 aXl A0 ] 1
Sw=y 2|3 et 71 b - sy M) ax
k=1 6X1 )0 i _] 1
KA
S0 = 3, O mMﬂ[,@W%ﬂ NY(e) ﬁx
k=1 a)(1 T 0 BJ=1

We shall estimate the individual terms. Let us put
(2.10) Fi(u®) = N{(€°)|g,0 + N7(€%)|g,0 .
We show that
(2.11) |Fi(u®)| < Ch|ju®||5,40 < Cyh|uls 4,
forany t = 1, ..., K4 To this end we use the mapping
(2.12) £ = (X - Xt)h
(see Fig. 2.2) and define
H(%) = @°(h% + Xp)
for any function ¢°. By (2.12) any parallelogram Aj is mapped onto the reference

“‘unit” parallelogram o = ¢ U ¢/, where 7 and 7’ denotes the upper and lower triangle
respectively.

Let us drop the subscripts ¢ for the time being. It follows easily that

M .
(2.13) N? (e%) = y <(b§’}') 0é,, + b 6em>/h + ny, ém) ,
1

m= 0%, 0%,
where

a A A
by = i, — (Pu), .
Therefore, we may write

1 M . M
(214) Fi(uo) = 1—1 mzlfim(ﬁm) +mzl Ny gM(ﬁm) °

Fulin) = 02 (S22 + 5220 >)+bs;>(6é'"<v)+%(y')),

0%, 0%,
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where y and y’ are the centroids of = and 7', respectively, and

gm(ﬁm) = e,,,(')’) - em(‘y’) .

By the direct calculation we can verify that
(2.15) fip) =0 VpePy(«), Vim.
In fact, let us choose e.g.

P(’en ’A‘z) = £7.
Then

ém = x% - ')?1 )

Tonp) = Dind(2y — 1+ 2y = 1) =0, as.o.
Since
,fim(ﬁm)[ g C” ﬁm”S,a 3

and (2.15) holds, we obtain
(216) Ifirn(ﬁtn)l é Clﬁm 3,a

using the Bramble-Hilbert lemma (see [6], Theorem 4.1.3).
Obviously, we have

dn(p) =0 VpePya),
|gm(ﬁm)| = C“ﬁm”La ’

so that the Bramble-Hilbert lemma yields

(217) Ig\m(ﬁm)| é Clﬁm|2,a .
For any w® € H'(T}), n = 0, 1, 2, 3, we have (see [6], pp. 118 and 122)
(2.18) [#],c < CH" W0l mo VIR €T

Substituting (2.16), (2.17) and (2.18) into (2.10), we arrive at
M M
(2.19)  |Fi(u®)] £ h™1Y Ch2[ud)s a0 + Y. Cohlunls a0 S Cah|u®]s 40
m=1 m=1

and (2.11) follows immediately.
Since v, is linear in T}, we have
[onl 1m0 = 272 Vavi o]
so that

(2.20) po
1

< Ch_1|l7,0“l1,1"k0 = Clh_llvm|1,Tk

holds in any triangle Tf.
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Using (2.11), (2.20) and the estimate
IKHL)| = [Killea = €5 Vi,
we obtain
Ka
(221) [Smil < ¥, CH?Julls.ac[onl 1,0 £ CH?[ul g [ou] 1,0 -
Let us pass to the term S,,,. Considering an arbitrary triangle Ty and dropping
the subscript k, we may write

[KE(X) = Kif(Lo)] = [Kijlevao - b < Ch,
(223 |], (K800 - KH(L2) M) 03] = Chlmes 7902 [N (@)oo
The well-known error estimate implies that
(2.23)  [N(e)]o,r0 < cmé[[ ty — (Pu,,)°[ 1,0 < Clnglhlu,?,lz,ro < Cohlufyr
Combining (2.22), (2.23) and (2.20), we obtain ‘

(2~24) ]szl = ; Chzl”m'l,Tk ]"]2,n§ Clhzlulz,!z l”m|1,9-

To estimate S,,3, we set
WO — N?(eo)

and
E(w°) = J.T 0(w° — w%(Gy)) dXx .

Since ey, = uy — Pup, e H¥(TY), we have N{(€°) = w® € H*(T}). Using the mapping
(2.12), we come to

2] = 3#7{E@) B = [ 6 = o) ax
It holds, however, that
E(p)=0 VpePyr),
|E()| = Cw],..-
Thus the Bramble-Hilbert lemma yields

|E()] < Clwlz.. -
By virtue of (2.18), we obtain

(2.25) |E{(w°)| £ C1h?|W];c £ C1h3|WO)y ppo -

It is readily seen that
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M
(2.26) IWOIZ,N’ = ‘N?(eo)lz,no = CZI(Iegls,TkO + |el(r)l|2,Tko) =

M
=C ZIH“ZHLW < Cilufs,z, -
Inserting (2.26) into (2.25), using (2.20) and the boundedness of K{}(LY), we get

KA
(227) Ism3‘ é Chzkzluu”&Tk IvaI,Tk é Chz”””:&,ﬂ |vm‘1,9 .

It remains to estimate the term S, in (2.6). Note that the estimate (2.20) holds
for the triangles By € 7,° by virtue of the condition (ii) of the strong regularity of
{7,}. For triangles B, adjacent to tangent segments we apply the following argument.
If we denote by ITu the linear interpolate of u in B, then for any node x € 0Q, n Q
|ITu,, (%) = Pu,(x)| = |u,(xX) — tu(Y)] £ |Vitn] cqy Ch* £ Cih*|u]|3,0.m = 1,..., M,
as follows from (H 1) and the Sobolev embedding theorem. Consequently,

”(num)o - (Pumb)olll.l?ko é Chzl|1'lm”39!2 ’
lum = (Pun) 1 pio < lum = (M) s g0 + [(Mtt)° = (Pu)°[ 0 <
< C(hfup|z,m, + B*|un]3,0) -
Then (2.23) holds for any B} with an additional term C;h*||u; o on the right-hand
side, where C; is positive only if B, is adjacent to a tangent segment. Thus we obtain

J K{; N{(e®) dX
;P

< Cy(h?lulyp, + Csh3|ull;s ) -

(2.28) < C(mes By)'/? |N7(e%)]lo 5o <

Combining (2.20) and (2.28), we arrive at the estimate
Kp Kp’
(229) |sy] gk;c1f1|u,,,|,,gk h?|ul, g, + clkzlc3h*|um|1,,,k h3||u];.0 <

é Chlulz,ﬂu lvmll,ﬂu + C4 hzllu”3:9 h—l/zlv"’ll:ﬂﬁ ?

where Qy is the union of all triangles (both from I and from 1), which do not
helong to any parallelogram A4,.

On the basis of the hypotheses (H 1) and (H 2) we conclude that
(2.30) max dist (x, 0Q) < 4h

xeQp

holds for sufficiently small h.

Next we employ the following result of V. P. 1ljin ([8], Theorem 4.4 and Remark
12.4). Let ©@° be a boundary strip of the widthe, lying in Q € €*(d),0 < ¢ < d. Then

(2.31) [wlo.ce = Ce2[w] 1 0

holds for any w e H'(Q), where C depends on d and the domain Q only.
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Using (2.30) and (2.31) with ¢ = 4h, we get
(2.32) ltunl2.00 £ Ch2 ] 3.0 -
Inserting this into (2.29), we come to the estimate
(2.33) Isil = enPlulag o ia-

Gathering the estimates (2.21), (2.24), (2.27) and (2.33), we obtain from (2.6)
and (2.9)

(2.39) la,| £ Ch¥|u]|5,0v]1,0-

The term a, in the decomposition of a(e, v) can be estimated by an analogous
way. The parallelograms A° are substituted by those with a diagonal parallel with-
the X,-axis. Altogether, we get the same upper bound for |a,| as that in (2.34).

To estimate the last term a3, we decompose it as follows

(2.35) a; = gl(Sm + 55,

where

Z Y nj,|det ﬂ']J K{vo N(e°) dX ,

t=11i,j=1
ij“m

Sk = S nj,|det ﬂ‘]j K02 N9(e®) dX ,
k= 11] 1

with the same decomposition of &, as in (2.7) and (2.8). Next we write

(2.36) S, =

W
2

+ gmz + gmB >

K. %
gml = z Z njmldet 3‘7[ K 1) U (L) A (No(em) le + No(em)|Gk

t=1i,j=1

z S nfdet 7] j (K3X) o0(X) — KO(L) o2(L)) NO(e) dX |

=1i,j=1

MM"

inldet 7| KO(L) L) (NFS) — D) 4X

Since we have (see [6], p. 142)

(2'37) ”vr(r).”cmk") < Ch” 1”Um”o T >
the estimate
(2.38) Swi] = Ch?|ull5.0 [omo,e

follows by arguments similar to those of (2.11)—(2.21).
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We can write
[ k500000 — (i) @) ax < 2 [ k500 - kP hp ax +
#AYLIP [ 00 — L) X 5 Ul o + i )
Combining this estimate with (2.23), we arrive at
03 1Sl £ T Flnlin i £ Ol
Using the estimates (2.37), (2.25) and (2.26), we obtain
240) [l = CZH lnlui Rluls = Coblulso Tl

On the basis of (2.23) and the derivation of (2.28) we have

J Kijon Ni(€%) dX| = Cllop]o.mo [N7(€) 0,50 =
Bi°

=< [[omlo.5(Cihlulz,5, + Csh*|u]s.0) .
Consequently,
ISl < Chlvmllo,0p [u]2.0, + Csh?|u]l3.0 Ch™ 2|V, [0 0,

follows easily. Using (2.30) and (2.31) twice, we are led to the estimate
(2.41) |Sal = Ch*[ulls o [on] 1.0
From (2.35), (2.36), and the estimates (2.38)—(2.41), we get

las| = Ch*[lull5.0 V] 1.0

Combining the bounds for ay, a,, as, we arrive at the estimate (2.5). |

Remark 2.2. Assume that the domain Q has a polygonal boundary, which consists
of line segments parallel with one of three different directions and the ratio of the
lengths of any two parallel sides is rational. Then we can put

Tw=Ty, Q=0Q,=0QF,
and a stronger estimate

(242) |a(u = Pu,v)| < Ch?|Ju]; o [|v]1,0

holds for sufficiently small h.

In fact, the term S in (2.6) vanishes, since v, = 0 on dQ implies that
vy

—™ =0 on any triangle BY.
0X, ’
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Consequently, collecting the estimates (2.21), (2.24) and (2.27), (and their analogues®)
for the terms a,, a), we arrive at the estimate (2.42).

Lemma 2.2. Let Q belong to the class €*(d), fe H¥(Q) and veV; for M = 1.
Define the approximation

(f: v):,ﬂ;,
by the centroid rule on the triangulation 7 ,. Then
(7, v)o.0 = (f: 0)5,0,| = CH*|f[2,0 [¥]1.0-

Proof. Following the idea of [11], we define the local error on a single triangle

E(w) =J. wdx — w(G)mes Ty, T,eT,,
and write "
K
0 0.0 = (0 ) < L ABLAG)] + BT — (G} -

Applying the affine mapping
x = By& + by,

which transforms the reference unit triangle = onto T}, we easily deduce
(2.43) |E(w)] < CR2|E(W)],
where

E(w) = J(v*v — W(y)dg, W(R) = w(Bs£ + by).

Since

[E(®)| < C[[9].,e
E(p) =0 VpeP(r),
the Bramble-Hilbert lemma yields

|E(D)] = CPhla.c.
Using the estimate (cf. (2.18))

|ﬁ>|2’, = Ch|W|2,Tk >
we obtain

(2.44) |E(w)| £ Ch3|w), g, -

Moreover, we have (by virtue of the strong‘regularity of {7,})

(2.45) [v(G| = [ollcry £ Ch7 o]0, VTie T,

1) Here suitable “‘regularized’’ domains @ 4 @, @ € %3((1), have to be used when employing
Iljin’s inequality (2.31).
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so that
(2.46) [E(f v(G))] = [E()| [”(Gk)l = C?||f ., lolls 7,
follows from (2.44) and (2.45).

Using again (2.43), we obtain

(2.47) wﬂ@—ﬂmngm%mwwmm=aﬂﬁw—m»w.

If we put
=Wﬁ=Jﬁﬁ—Mmdﬁ

then
F(p)=0 Vp e Py(7),
since # is linear, and
7D = Clp = 8o |F]1.e -
From the Bramble-Hilbert lemma

follows.
On the other hand, we have

5®) — 36)] < [V (¢ = )] < ¥s

, XerT.

Consequently, we get
16 =200 < o]y
7N = Clolue Flie < Collflame o],z -
Substituting into (2.47), we arrive at
(2.43) |E(f(0 = o(GI)| = CH*|f |1,z o] 1.1
Combining (2.48) with (2.46), we obtain

|72 00,0 = (£ 0)o.0,| £ € E W\ arm o] s, < CH2| 2.0 o0

To introduce an approximation of the problem (2.1), let us assume that it € W n

A (C(©@))™. Then the discrete problem can be defined as follows:
Find u, € Pa + V, such that

(249) a(uh’ Vh) = (f: Vh)O*,Qp. Vvh € Vh >

where the right-hand side is defined as a sum over m = 1, ..., M, of the approxima-

tions defined in Lemma 2.2.



Theorem 2.1. Let Q belong to the class €°(d). Let u e (H¥(Q))" and u,, be the solu-
tion of (2.1) and (2.49), respectively, where f e (H*(Q))". Then
luy = Pull, 0 = C2([u] 5.0 + [f]2.0)
holds for sufficiently small h.
Proof. Asueu + V, u,e Pu + V,, and the mapping P is additive, it is readily

seen that
v,=Pu—u,eV,.

Thus employing the inequality of Korn’s type (2.4) and the definitions (2.1), (2.49),
we come to

(2.50) [Py —u]i o = Ca(Pu—u,v,) £ Cla(Pu — u,v,)| +
+ It’l(u, Vi) — a(”/n Vh)l) = C(]a(Pu —u, Vh)l + Kf’ Vido.o — (f Vh)?;,m,‘) .

Estimating the terms in the right-hand side with the help of Lemmas 2.1 and 2.2,
we obtain *

[Pu— w0 = CH([u] 5,0 + [f]2.0)- =

Remark 2.3. Let the domain Q have a polygonal boundary which consists of line
segments parallel with one of three different directions and the ratio of the lengths
of any two parallel sides is rational. Assume that the solution u of (2.1) belongs
to (H3(Q))" and the right-hand side f e (H*(Q))".

Then we put 7, = 71, Q@ = Q;, and

(2.51) [uy — Pu|y o £ CR*(||u]s,0 + [f]2.0)

holds for sufficiently small k.
This result follows from Remark 2.2, Lemma 2.2 and (2.50).

3. AVERAGED GRADIENT AND ITS APPROXIMATION PROPERTIES

The results of this section will be used later to obtain better approximation of the
first derivatives of the solution u than the derivatives of u, (cf. (2.49)). For the time
being, however, let v, = (v, ..., tar) € (W)™ be arbitrary. The gradient of its m-th
component v,,, (the subscript m will be dropped in the whole section) is a piecewise
constant vector function. This enables us to define an averaged gradient G,,(v,,)
on the domain Q} as the linear interpolation of I~ i of the nodal values

(3.1) (o) (x) = 3 w7 grad
I=
Here n = n(x)e {1, ..., 6} is the number of triangles of 77, which contain the node
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x, m, is the number of the triangles T; sketched in Fig. 3.n, the weights w3, j € {1,
...,m,}, are real numbers the values of which are marked also in Fig. 3.n, in the

corresponding triangles T7.
w-uz.

. 34 0 .
aQ 3/4 aQ

<"

Fig. 3.1. Fig. 3.2.

al"

YAVANNY,

Fig. 3.3. Fig. 3.4.

/0 ; ;1/4 \ a*
1 jx 16 ﬁ 16
Fig. 3.5. Fig. 3.6.

A crucial point of our analysis will be the proof of the estimate
|grad v — Gy(Pv)|o,0,« = O(h?)

for any sufficiently smooth scalar function v (note that we have only [grad v —
— grad Poo o,+ = O(h)).

At first let us consider the difference grad v — G,(Pv) on a single triangle Te 7.
From (3.1) we see that the values of G,(s,) on T depend only upon the values of
grad v, on D(T), where
(3.2) DT)=UT.

T'nT+0
T'eT p*
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Furthermore, we set 4 = D(t) for the reference triangle v with the vertices (0, 0),
(1,0), (0, 1) — see Fig. 3.7 below. It is clear that for any T'e 7 there exists a regular
2 x 2 matrix By and a vector by € B? such that

Fi(t) =T,
where
(3-3) Fi(f) = B2 + b,
As the system MM = {77} is regular (see [6] for Zldmal’s condition), we get
(3.4) [B| = Ch.
Moreover, the strong regularity of 9 yields
(3.5) [Br'| < cht.

For D(T) given by (3.2), we put
o = Fr'(D(T)).

Obviously 67 S 4, and there is only a finite number of (reference) domains dr,
when T passes through all triangulations 7 .

Let o be a continuous and piecewise linear function on J;. Let the averaged gradient
G (b) on the reference triangle 7 be a linear function which is defined at the vertices
£ of 7 likewise (3.1), i.e.

(3.6) (G(9)) (%) =§1w; grad b

where T} = F7 '(T}) and x = F(%). There is again only a finite number of different
formulae for GT(ﬁ). For simplicity we drop the subscript 5 for the time being.

)

Lemma 3.1. There exists a constant C > 0 such that
(3.7) lgrad & — G(Po)|o,. < Clo5,5 VoeHY ),
where Pb is the linear interpolation of b on 5.

Proof. Let # € H*() be arbitrary and let y be that vertex of t, where the convex
function £ — [|(G(Pd)) (#)|* attains its maximum over 7. Then for a suitable ke
e{l,..., 6} we may write

(3.8) 1G(Po)o, < (mes )/ [[(G(PD)) (y)]| =
< (mes T)‘/zjmg;]wﬂ |grad Pﬁ[ﬁy [ < 3(mes 7)1/2|| grad Po|y,| <
< 3||grad Po, 5,

mp
because Y. [w}| < 3 and T} < 4.
=1
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For a fixed § € L*(t) we define a linear functional @ by
®(p) = (grad & — G(Pd), §)o..» D€ H3).
We apply (3.8) to see that @ is bounded on H3(5), i.e.
(:9) 90 = Jlrad 0 — 6P o 1l <
< (Jel« + 3lsrad Po)o.) 9l S Clilss 1o
Next, we show that
(3.10) G(Pp) = gradd on
for all quadratics d € P,(5). Since both functions in the left- and right-hand side
of (3.10) are then linear, it suffices to prove (3.10) for all vertices of 7. Let us confine

ourselves to the vertex (0, 0) and to the first components of the gradients (the proof
for the second components and other vertices is essentially the same). Let us write

Al A a2 A A A2
B(%y, £,) = co + 1%y + 2%, + 387 + ¥k, +esk,

and let us number the triangles from the union 4 = D(r) as marked in Fig. 3.7.

A
X2
A
T
A
T3 Zf11
A A
T Tio
A A A
T3 =N Tg A
X1
A A A
Tl’ TS T8
A A
T5 Ty

Fig. 3.7.

Then the averaging, which corresponds to the situation of Fig. 3.1, yields
((G(P2)) (0, 0)), = 30,Pb|y, + H0,P0|s,, — 0,P0|7, — 0,PD],) =
=3(c; +¢3) + ep + ez + ey — (e +3¢3) = (¢ +e3 4+ cu) =

=¢; = (0,0)(0,0).
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The point x at the Fig. 3.2 is common to two triangles. Mapping e.g. the left
one to 7, we obtain

((G(Pﬁ)) (0’ 0))1 = %(alpﬁlfl + alpﬁ,TG) - 2‘L(alpﬁlTs + alﬁﬁ"fb) =
=3(c; + 5 + oy +c3) —Hey + 3¢5+ ¢y + 3¢3) =cy .

The other cases can be proved by an analogous way (see also [9], p. 108, for the
situation of Fig. 3.6).

Thus (3.10) implies that the functional @ vanishes for all § quadratic. From the
Bramble-Hilbert lemma and (3.9), we come to

l(p(ﬁ)l é é|ﬁ|3,6 ”gAHO,r B
which proves the lemma. | 2

Lemma 3.2. There exists a constant C > O such that for any Te T ; (T
e M) it holds that
|grad v — Gy(Pv)|o,r < Ch*v|;, Voe H (D),

where D = D(T) is defined by (3.2).

CF/"he

Proof. Let Te 7, be given. In accordance with (3.3) we get
(3.11) grad v{x) = (B ")" grad x) ,
provided v e H3(D) and & € H3(8) are coupled by the relation

8(x) = v(x) (x = Fy(x)e D).

Obviously, the formula (3.11) is valid for continuous and piecewise linear functions
v and 9, too. Therefore, using (3.1), (3.6) and the fact that F1(5) = D, we easily find
that a formula similar to (3.11) holds also for the averaged gradients, i.e.

(Gi(v)) () = (B )T (G(0) (%) (x = Fe(x) € T),
where v and b are continuous and piecewise linear on D and J, respectively. Hence,
(Gi(Pv)) (x) = (B7 ")" (G(Pv)) ()

for all xe T, ve H}D) and the corresponding x €7, b€ H33). Combining this
result with (3.11) and (3.7), and using the well-known relation (Pv)" = Pp, we arrive at

(3.12) lgrad v — Gy(Pv)|3.+ <
< |B7'|? |erad & — G(Po)|3 . |det'By| < C||B7||* |det By| |83 5 -

Since (see [6], p. 118)
[6]5.6 < C[[B7]* |det Bz| ™" [o3. ,

from the estimates (3.12), (3.4) and (3.5) the assertion of the lemma follows.  mm
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The following estimate will be applied in the next section to each component
of the solution u = (uy, ..., uy).

Theorem 3.1. There exists a constant C > 0 such that

(3.13) lgrad v — Gy(Pv)|o,0,+ < Ch*[v|5,0,« Yve H Q).
Proof. From Lemma 3.2 we have
(3.14) lgrad v — G(Pv)||3 o« = Y. |grad v — G,(Pv)5 .+ <
TeJ n*
S Ch* Y |3 p S 13C7H* Y o3 = 13C7h*|3 0,0 Vv E HQ).
TeT n* TeT n*
since any Te 7 is contained in at most 13 sets D(T}), i = 1, ..., k (k < 13), where

T,, Ts, ..., T, € 7 are the “neighbouring” triangles to T = T (cf. Fig. 3.7). ]

4. THE MAIN RESULT ON THE SUPERCONVERGENCE

Now we are able to prove the main theorem of the paper. We collect the above
results to obtain a superconvergence of the derivatives for our elliptic problem (2.1)
with the solution u = (uy, ..., uy). Let us recall that u, = (uy, ..., u,;) denotes
the solution of the discrete problem (2.49). We adopt the following notations. By
%,(u,) we denote 2 x M matrix, the j-th column of which equals to G,(u;,); and
let ou/ox be 2 x M matrix of the first partial derivarives of u.

Theorem 4.1. Let the assumptions of Theorem 2.1 be satisfied. Then

a_:g( ~9w)| = C(uls0 + [fl20)

0,Qu*

-

holds for sufficiently small h.
Proof. Obviously,

(4.1)

— — gh(uh)

M
< Y lerad u; — Gy(ujn)]o,0m =
0x =1

0,0, J=

M
< Zl(”grad u; — Gy(Puj)|o.au + [|GW(Pu; — tip)]o.ane) >
iz
and from Theorem 3.1 we may easily bound the first terms

(4-2) lerad u; — Gy(Puy)|o,0,¢ < Ch?|ugls 00, J=1,...., M.

To bound the second terms we use some ideas of Sections 2 and 3. As Pu; — uy,
is a continuous piecewise linear function, we find likewise (3.8) that

1Gu(Pu; — up)]lo,r < 3[grad (Pu; — u)|o,ner) »
whenever Te 7 and je{l,..., M}. Any Te 7 is contained in at most 13 sets
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D(T),i =1,...,k < 13(cf. (3.14)), and therefore

(4.3) G Pu; — uy)|lo 0 = 3/(13) |lgrad (Pu; — wjp)]|o.0m <
< 3J(13) |Pu — u|, o,

which can be further estimated by Theorem 2.1. The theorem now follows from
(4.1), (4.2), and (4.3). .

Remark 4.1. In case of a polygonal domain discussed in Remark 2.3, the Theorem
4.1 holds even with the power h? instead of h32 and we obtain the global super-
convergence in the ||*|o,o-norm. The regularity assumption ue(HQ))", how-
ever is unreasonable for general non-smooth boundaries and fe(H*(Q))”. For
boundaries of the class #‘*, we have u e (H3(Q)) if ii e (H}(Q))" and f e (H'(Q))¥,
as follows from [1] and [17], Lemma 3.2, Chapt. 5.

Corollary 4.1. Extending the definition of %,(u,) in the simple manner
ou ; 5
Gu) =" in Q) =Q, - QF,
ox

one can deduce even the global superconvergence estimate

ou
- gh(uh)

ox < Ch(|Juls.0 + [f]2.0) 5

0,2

under the same assumptions as in Theorem 4.1.

Proof. By the above Theorem 4.1, it suffices to estimate the term
0
= G,(u,)

M
< Y |lerad u; — grad uyfo g, <
ox =1

0,0,i J=

M
= ,Zl(”“i = Puj| 0,0 + [lu — Pujlly 0) -
i=

The bound for the last term follows immediately from Theorem 2.1. Thus it remains
to deal with the term |u; — Puj||; o,:. Denoting by = the standard interpolation
operator, we easily find like in the proof of Lemma 2.1 (cf. the derivation of (2.28))
that

(44) luj = Pujlli g < [y — 7wl gy + [y = Pl 0,0 <
< C(hluj|z 0 + B2 [uj]s.0) -
On the basis of the hypotheses (H 1) and-(H 2) we conclude that

max dist (x, 0Q;) < Ch.
xedf2

Consequently the use of the Iljin inequality (2.31) and (4.4) yields

lu; = Pujlli g, < CH¥?|luy]5.0. L
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Souhrn

O JEDNOM SUPERKONVERGENTNIM SCHEMATU
V METODE KONECNYCH PRVKU PRO ELIPTICKE SYSTEMY

1. DIRICHLETOVY OKRAJOVE PODMINKY
IvAN HLAVACEK, MicHAL KRiZEK

V &lanku se uvaZzuji systémy eliptickych rovnic druhého fadu (zahrnujici Lamého rovnice
pruZnosti) s nehomogennimi Dirichletovymi okrajovymi podminkami na omezené rovinné
oblasti. Pfedklada se jednoduché pramérujici schéma, které zaruduje superkonvergenci derivaci
feSeni pfi pouZiti standardnich line4rnich trojuhelnikovych prvka. Je dokdzan globalni odhad
chyby v L?-normé tadu O(h3/?) pro oblasti s hladkou hranici. Pro jistou tfidu polygonal-
nich oblasti se odvozuje globalni odhad chyby fadu O(h ).

Pesrome

OB OHOU CYIIEPCXO/SIMIEVCA CXEME METOOA KOHEYHBIX DJIEMEHTOB
JJ1A QJUIMINTUYECKUX CUCTEM

1. TPAHUYHBIE YCJIOBUS OUPUXJIE
IVAN HLAVACEK, MICHAL KRiZEK

B paboTe paccMaTpuBaIOTCA CUCTEMBI JJUIMIITHYECKUX YPABHCHMU BTOPOTO mopsiaka (BKIovya-
FOIIKe ypaBHEHUsI ynpyrocty Jlame) ¢ HEOAHOPOAHBIMM TPAHUYHBIMHU YCIOBSIMHA [{upuxiie Ha orpa-
HUYEHHOM AByMEpHO#l obsactu. Ilpeasiaraercst mpocrasi OCpeHsoIIasi cxeMa, KOTopasi TapaHTh-
pYyeT CYHepCXOOVMMOCTb TMPOM3BOIHBIX PEIIEHUs] NPH HUCIOJB30BAHMM CTAHJAPTHBIX JIMHEMHBIX
TPEyroJbHoIX 3JIEMEHTOB. JloKka3zaHa riiobansHas ouelka B L? ~-HOPMe IOpsiIKa O(h3 / 2) IS obnacteit
¢ rnaaxo# rpanuueit. [{ns cnenuanbHOro Kiiacca MHOTOYTOJIBHBIX 00JIacTeil moydyena riioOanbHast
OIICHKA OIMOKM mopsiika O(hz).
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CSAV, Zitna 25, 115 67 Praha 1.
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