[1] F. Brezzi:
Non-standard finite elements for fourth order elliptic problems. Energy Methods in Finite Element Analysis. John Wiley&Sons Ltd., Chichester, New York, Brisbane, Toronto, 1979, 193-211.
MR 0537006
[2] F. Brezzi P. A. Raviart:
Mixed finite element methods for 4th order elliptic equations. Topics in Numerical Analysis, vol. III, Academic Press, London, 1976, 33 - 36.
MR 0657975
[3] P. G. Ciarlet:
The finite element method for elliptic problems. North-Holland, Amsterdam, New York, Oxford, 1978.
MR 0520174 |
Zbl 0383.65058
[4] P. G. Ciarlet R. Glowinski:
Dual iterative techniques for solving a finite element approximation of the biharmonic equation. Comput. Methods Appl. Mech. Engrg. 5 (1975), 277-295.
DOI 10.1016/0045-7825(75)90002-X |
MR 0373321
[5] P. Doktor:
On the density of smooth functions in certain subspaces of Sobolev spaces. Comment. Math. Univ. Carolin. 14, 4 (1973), 609-622.
MR 0336317
[6] B. Fraeijs de Veubeke: Finite element method in aerospace engineering problems. Computing Methods in Applied Sciences and Engineering. Part 1, Springer- Verlag, Berlin, Heidelberg, New York, 1974, 224-258.
[8] I. Hlaváček:
Convergence of an equilibrium finite element model for plane elastostatics. Apl. Mat. 24 (1979), 427-457.
MR 0547046
[9] I. Hlaváček M. Křížek:
Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries. Apl. Mat. 29 (1984), 52-69.
MR 0729953
[10] J. Hřebíček:
Numerical analysis of the general biharmonic problem by the finite element method. Apl. Mat. 27 (1982), 352-374.
MR 0674981
[12] L. A. Ljusternik V. I. Sobolev: A short course of functional analysis. (Russian). Izd. Vysšaja škola, Moscow, 1982.
[13] L. Mansfield:
A Clough-Tocher type element useful for fourth order problems over nonpolygonal domains. Math. Соmр. 32 (1978), 135-142.
MR 0468241 |
Zbl 0382.65060
[14] S. G. Michlin: Variational methods in mathematical physics. (Russian). Izd. Nauka, Moscow, 1970.
[15] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
MR 0227584
[16] J. Nečas I. Hlaváček:
Mathematical theory of elastic and elasto-plastic bodies: an introduction. Elsevier, Amsterdam, Oxford, New York, 1981.
MR 0600655
[17] K. Rektorys:
Survey of applicable mathematics. Iliffe Books Ltd., London, SNTL, Prague, 1969.
MR 0241025 |
Zbl 0175.15802
[18] K. Rektorys:
Variational methods in mathematics, science and engineering. D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1977.
MR 0487653
[19] G. Sander: Application of the dual analysis principle. Proc. of the IUTAM Sympos. on High Speed Computing of Elastic Structures, Congrès et Colloques de l'Université de Liège, 1971, 167-207.
[21] A. Ženíšek:
Curved triangular finite $C^m$-elements. Apl. Mat. 23 (1978), 346-377.
MR 0502072