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SVAZEK 30 (1985) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

INTERNAL FINITE ELEMENT APPROXIMATION IN THE DUAL 
VARIATIONAL METHOD FOR THE BIHARMONIC PROBLEM 

IVAN HLAVÁČEK, M l C H A L KŘÍŽEK 

(Received May 25, 1984( 

1. INTRODUCTION 

The aim of this paper is to present a conforming finite element method for the dual 
variational formulation of the biharmonic problem with mixed boundary conditions 
on domains with a piecewise smooth curved boundary. We use C°-elements while 
any conforming primal finite element method for the biharmonic problem requires 
C1-elements, which are more complicated especially for curved boundaries [13, 21]. 

Note that by the dual method we calculate all second derivatives of the solution of 
the biharmonic problem, which are often more interesting than the solution itself. 
For instance we can get bending moments of an elastic plate. 

In the next section we introduce a "pure" equilibrium model for the biharmonic 
problem. We justify the so-called static-geometric analogy ([6, 19]) by proving the 
existence of a vector potential v e (H1(Q))2 of an equilibrium bending moment /*, 
which satisfies the equilibrium condition div Div /i = 0 in the domain Q and some 
conditions on a part of the boundary dQ (Sections 3 and 4).Then we present (Section 
5) a general dual finite element method for the biharmonic problem (employing 
polynomials of arbitrary order). We prove the convergence of this method in the 
L2-norm without any regularity assumptions on the solution. The paper generalizes 
the results of [11], where the dual finite element analysis of a clamped plate problem 
was studied on polygonal domains. Let us note that piecewise linear equilibrium 
elements have been proposed in [7, 19]. Bending moments can also be obtained by 
mixed finite element methods [1, 2, 3, 4]. 

Let us introduce some notations. Throughout the paper, Q c R2 will always be 
a bounded domain with a Lipschitz boundary dQ (see [16], p. 17). Let v = (v l 5 v 2 ) T 

be the outward unit normal to dQ and let r = (— v2, v t )
T . By Pj(Q) we mean the space 

of polynomials of the order at most j defined on Q. Notations Hk(Q) (k _• 0, integer) 
are used for the Sobolev spaces of functions, the generalized derivatives of which up 
to the order k exist and are square integrable in Q. The usual norm and seniinorm 
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in Hk(Q) and also in (Hk(Q))p (p _• 1, integer) are denoted by \\*\\ktQ and \'\kM, 
respectively. The scalar product in (L2(Q))P is denoted by (*, -)0,n- The space of 
symmetric tensors 

(U(Q))tym = {Te(L\Q)?\T = Sl 

will be equipped with the scalar product 
2 

(T> P)o.n = I 0t7> /<,7)o,fl f o r *> /* G (L2(0))4
m . 

For simplicity, the subscript Q will sometimes be omitted. Let us introduce the opera­
tor e: (/-/'(.G))2 -> (L2(jQ))4

ym defined by 

e(v) = h ^ i ( ^ 2 + V2A , v = (vx, v,Ye(H\Q))2 , 
\sym., v2,2 / 

where vik — du^dx^ 
The space of infinitely differentiable functions with a compact support in Q will 

be denoted by 2(Q). 
Further, let g e (L2(Q))2 be arbitrary. If 

(LI) (r,iv))o = (g,v)o Vvz(Q(Q)Y 

holds for some T e (L2(£>))4,m, we say that the divergence of the tensor function T 
exists in the sense of distributions in Q and define 

Div T = — g . 

Evidently, for smooth T we have 

D i V T = ( T U > 1 + T l 2 ( 2 , T 1 2 a + T 2 2 ) 2 ) T . 

2. DUAL VARIATIONAL FORMULATION OF THE BIHARMONIC PROBLEM 

Let us suppose that the boundary dQ consists of four mutually disjoint parts Mu 

ri9 F2, F3 such that 
dQ = Mx u F! u F2 u F3 , 

where Mx is the union of a finite number of points and F1? F2, F3 are open in dQ. 
Assume that Ft =j= 0 or F2 is not contained in a single straight line, and let F{ be 
piecewise C(2). 

The biharmonic problem for an elastic homogeneous and isotropic plate with 
mixed boundary conditions can be formulated [14, 16, 18] as follows: Find z e C4(0) 
such that 
(2.1) A 2 z = f / D in Q, 

z = 0 , dzjdv = 0 on Ft , 

z = 0 , J((z) = 0 on F2 , 

M(z) = 0 , J/\z) = 0 on F3 , 
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where z is the deflection, 

Jt(z) = O-Az + (1 - (j)(v2z.11 + 2v1v2z f l2 + v^z>22), 

j /Y z ) = _ dAl + (] __ ^ d p ' - ^ f c . i - ~ z,22) ~ (v? - ^2)^.12)^ 

3/5v and djdx is the normal and tangential derivative, respectively, 0 < a < 1/2 is 
the Poisson constant, / is a given load ( / e L2(£>) or more generally f e(C(Q))'), 

D = 2 £ " 3 

3 ( 1 - ^ ) ' 

E is Young's modulus of elasticity and 2/? is the (constant) thickness of the plate. 

For the primal variational formulation of (2.1) let us introduce the space 

(2.2) Z = Le H2(Q)\ z = 0 on r1 u F2, — = 0 on FA , 

and the operator hes: H2(Q) -> (L2(0))4
ym, 

hesz = ( Z ' n ' 2 ' 1 2 

\ Z , 1 2 ? Z , 2 2 

Further, let A = (AiJkl)iJtkfl = 1, where Anll = v42222 = D, A1122 = Dcr, A1212 = 
= D(I - G)/2, A1112 = A2221 = 0, and let 

(2-3) AJikl = Aijkl = AkUj . 

Then we have 

(2.4) (A . p, f,)0 ^> C\\42
0 Vfie(L2(Q))tym. 

Here we write T = A . p, when 
2 

fc, / = 1 

for t , /1 e (L2(f2))*ym. 

Let us recall [10, 16] that the primal problem consists in minimizing the functional 
(of the potential energy) 

I(z) = i ( 4 . hes z, hes z)0 - </, z> 

over Z (<•, •> denotes the dual pairing between (H2(-0))' and H2(Q)). 

Henceforth, we introduce the set of statically admissible bending moments 

M(f) = {/i e (L2(0))4
m | (/1, hes z)0 = </, z> Vz e Z} . 
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The dual problem consists (see [1, 16]) in minimizing the functional (°f t u e 

complementary energy) 
J(m) = i (A~ 1 .m,m)0 

over M(f), where A~l is the inverse to A. 

For A"1 the relations analogous to (2.3) and (2.4) hold, and we have Ann = 

= A22\2 = D-- ( l - t T 2 ) " 1 , ^ ^ = -oD~\\ - a2)-\A~l2\2 = D " ' ( l - ( r )" 1 / 2 ' 

^1112 ^ ^2221 = 0. 

We define the space of equilibrium bending moments in the following way 

M = M(0) . 

Note that for smooth /i e M it holds that 

divDiv/i = p l l f l l + 2lu12>12 + / i 2 2 , 2 2 = 0 . 

Clearly, the dual problem can be formulated in an equivalent way: Given k e M(f) 
(see Remark 2.1 below), find ke M which minimizes the functional 

(2.5) J(fi) = | (A "» . /*, /i)0 + (A "» . /*, I ) 0 

over the space M. The tensor A + k is considered to be the solution of the dual prob­
lem and to any k e M(f) there exists exactly one k. Moreover, we have the following 
equality (see [16], p. 250) 

k + k = A . hes z , 

where z is the solution of the foregoing primal problem. 

R e m a r k 2.L We shall describe a way of finding some k e M(f) in practical cases. 
Let all the functions occurring below be sufficiently smooth so that the corresponding 
symbols have the correct sense, and let us look for 1 in the form 

I = <p + }j/ . 

We define <p = (cpu) e (L2(Q))tym by 

<Pu = <Pi2 = 0 , 

* * 2 /»<_: 

<r>22vX l> X 2 1 — 

>x2 /»£ _ 

f(x1,rj)áná^ , ( x ^ x ^ e í ž , 
o J o 

where / = / in Q and / = 0 in R2 - Q. 

We introduce the operator co: (H\Q))2 -> (L2(&)); 

> ~ K ^ l . 2 + *>2,l) 

Jsym 

»(v) = ( " - • - ' 
\sym., v i . i 

We put 

^ = co(v), 
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where v e(Hl(Q))2 is an arbitrary function satisfying 

co(v) . v = — (p . v on F2 u F3 , 

(Div co(v)) . v = — (Div <p). v on F3 . 

Then by the Green formulae we get for z e Z 

(ip + })/, hes z)0 = ( - D i v (ip + \j/), grad z)0 + (grad z)T (<p + *//) . v ds = 
J so 

= (div Div (cp + co(v)), z)0 — z(Div (<p + co(v)) . v ds -f-

+ (grad z)T (<p + co(v)). v ds = (div Div cp, z)0 = (/, z)0 = </, z> , 
J T2UT3 

that is I = (p + ty e M(f). 

3. EXISTENCE OF A VECTOR POTENTIAL OF EQUILIBRIUM 
BENDING MOMENTS 

In this section we shall rectrict ourselves to the case F2 = 0 (the case dQ = F2 

of the simply supported plate will be discussed in Section 4). Let us define the space 

(3.1) V= {ve^i^Q))2] v = 0 on F3) . 

In the following theorem we show (under certain assumptions) that for any equi­
librium bending moment fie M there exists a vector potential ve V such that 
H = co(v). 

Theorem 3.1. Let Fx and F3 be connected. Then 

M = co(V) . 

Proof. For an arbitrary /i == (fitJ) E M let us set 

p * = ( /*22> - M 2 l \ 

V - ^ 2 1 , Mil/ 

Then we have 

(3.2) (/i*, Q(Z))0 = fa hes z)0 = 0 VzeZ, 

where Z is defined by (2.2) and 

e { z ) = ( * • - - • - * . » ) . 

\ — Z , 1 2 » Z , l l / 
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As F! and F3 are connected, it holds that (see [11], p. 51) 

(3-3) (l3(Q))%m = E(V)®Q(Z). 

Hence, by (3.2) there exists v e Vsuch that /i* = s(v). Thus /* = o)(v) and /* e OJ(V). 

Conversely, let v e Vbe given. Then by (3.3) we obtain 

(co(v), hes z))0 = (e(v), Q(Z))0 =0 VzeZ. 

Therefore, ao(v) e M. m 

R e m a r k 3.1. We can easily ascertain as in [16], p. 78, that f(l ,0)T , (0, 1)T, 
(x2, — xi)T} is a basis of the space 

(3.4) V° = {ve(Hl(Q))2\co(v) = 0} . 

Thus for F3 4= 0 (F3 is open in dQ), the vector potential is unique, while for Fj = dQ 
(a clamped plate) it is unique apart from a function of V°. 

R e m a r k 3.2. As a consequence of Theorem 3.1 we get 

(L2(Q))%m = co(V)@hcsZ, 

when ri and F3 are connected. 

4. SIMPLY SUPPORTED RECTANGULAR PLATE 

Throughout this section we shall assume that F2 = dQ. Consequently, the space Z 
(used in the definition of M) will have the form 

(4.1) Z = {ze H2(Q)\ z = 0 on dQ} . 

First we prove the following lemma. 

Lemma 4.1. Let Q be an arbitrary domain and let an open part F c dQ be from 
C(2). Assume that z e C2(Q). Then 

(4.2) fv(z) = v . (Q(Z) . v) = k ~ + •—Z
T on r , 

OV OS 

(4.3) tT(z) = t . (e(z) .v) = k ~ - ~ on r , 

OS OSOV 

where k is the curvature of F and dzjds = dzjdz = ' -v 2 z ( ] + vxz2. 

Proof. As i = (T1? T 2 ) T = ( — v2, Vj)7, we have 
dz 

(4.4) (Q(Z) . v)1 = Qll(z) vx + Q12(Z) v2 = Z> 2 2T 2 + z j l 2T! = T . grad (z 2 ) = —-- , 
OS 
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(4 .5) (Q(Z) . v ) 2 = Q2i(z) V} + Q22(z) V2 = ~ZA2T2 - Z t l l T , = 

= - T . g r a d ( z , 1 ) = - -J-'-1 . 
ds 

Furthermore, it holds that 

tv(z) - v . (Q(Z) . v) = V}(Q(Z) . v), + V2(Q(Z) . v)2 = 
2 

= Tl(Z,22^2 + Z , l 2 T l ) + * l ( Z , 12*2 + Z , U T l ) = X XiTjZ,W 
ij=l 

Using Frenet's formulae ([17], p. 308) 

^ = - f c v „ J = 1 , 2 , 

O^S 

and dxijds = rh we arrive at the equation 

a2z a , , 
T7 = - ( z , i T i + Z^2) = 
ds" ds 

= ZAlx] + Z 1 2T 1T 2 + Z 2 1 T 1 T 2 + Z?22T2 - Z xkvx - Z 2kV 2 = tv(z) - k— , 

Ov 

which proves (4.2). 

From (4.4) and (4.5) we have 

f t (z) = Tj (^(z) . V)- + T2 (c(z) . V)2 = T, — ^ - T2 — ^ , 
ds as 

d (dz\ d , v z i Oz 2 . . 
— J = \ZA%2 ~ Z - 2 T l ) = ~ T 2 ~~ + T, ~ + ZflfcV2 - Z ^ k V j = 

3s \ 3 v / Os 3s (3,s 

dz 
= tT(z) - fc - , 

ds 

which proves (4.3). u 

Henceforth, we shall investigate only a rectangular plate, which is one of the most 
important cases. 

Let us introduce the space (cf. (1.1)) 

Q0 = {Te(L2(fi))*ym|DivT = 0 i n Q} , 

and the following subspace of Q0 

(4.6) T = T(Q) = {T e (L2(*2))*ym| (T, 8(v))0 = 0 W e V} , 

where 
V - {v e (H1^))2] vrlSi = ci9 i - l 9 2, 3, 4, ct e R1} , 

vT = T . v is the tangential component of v and S; are sides of the rectangular domain 
Q (see Fig. l). 

261 



Definition 4.L Let Q be a rectangle with the sides Sl9 S 2, S 3 , S 4 . Introduce the 

following spaces 

irl = r\Q) = {vt e H\Q)\ vx = 0 on S{ u S3} , 

r 2 = r\Q) = {v2eH\Q)\ v2 = 0 on S2 u S4} . 

For T e Q0 we define the functional tv(T)e(yi/"i x yf"2)r by the relation 

<*V(T), yv) = (T, e(v))0, v = (vu v2)
T , 

w//eT(? y: (H\Q))P -> (H1/2(r?.Q))/7, p = 1, 2, denotes the trace operator. 

s 3 

S4 Л s 2 
Fig. 1. 

s. 
R e m a r k 4.L From the definition of Q0 it follows that tV(T) does not depend on 

extensions of yv1 and yv2 into the interior of Q. The notation tv is in agreement with 

the fact that it represents an extension of the mapping 

T -» v . (T . v) = tv(T) , 

which is defined for all symmetric T G (C(;Q))4. 

Theorem 4.1. Let Q be a rectangle. Then 

T = Q(Z) , 

where Tand Z are given by (4.6) and (4.1), respectively. 

The p r o o f is based on three auxiliary lemmas. 

Lemma 4.2. Let Q be a rectangle. Then T e T if and only if it satisfies the following 

three conditions: 

(a) Div T = 0 in Q, 

(b) ( T 1 2 , 1)0 = 0, 

(c) tv(T) = 0 (i/i the sense of Definition 4A). 

Proof. Let us write Q = (0, a) x (0, b) and choose wJ e (P\Q))2, j = 1, 2, 3, 4, 

such that 

w{ = 1 on Sj, w{ =- 0 on O1^ - Sy . 

We have 

^>-C7")- ^>-C.> "* w = (t) ' "'W=G-°J-
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Then we may write 
4 

(4.8) V - X cJwJ + r ' x ^ 2 > c j e R i 

1=1 

For T e T we get 

0 = (T,E(W% = - І 
b 

т 1 2 dx 
Q 

since 

0 - ± ) 
(4.9) s(w') = | 2Z> 

___ 0 
2b' 

i.e. the condition (b) holds. The condition (a) follows from (1.1) and (4.6). 

Let us choose v e f'x x Y2, that is vT = 0 on dQ. Then 

0 = (T, e(v))0 = «V(T), yv> , 

which is the condition (c). 

Conversely, let T e (l?(Q))*ym fulfil (a), (b), (c). As a(wj) is of the form (4.9) for every 

I = l, 2, 3, 4, we find by (b) that 

(4.10) (<z,s(wJ))0 = const. т 1 2 dx = 0 . 

For any v e i^1 x i^2 the conditions (a) and (c) imply 

(4.11) (T,8(V))0 = < t v ( T ) , y v > = 0 . 

The combination of (4.10) and (4.11) with the use of (4.8) yields T G T . M 

Lemma 4.3. Let Q{ and Q2 be identical rectangles having one common side 

S = Q1 n Q2, which is parallel with the axis xt or x2. For % e T(Qt) let Ex be defined 

on Q3 = int(Q1 u Q2) by the extension of T (KT|fll = T) such that ETH (i = 1, 2) 

is an antisymmetric function and ET12 is a symmetric function with respect to S. 

Then Ex e T(Q3). 

Proof. Let S lie on the axis x2 and let F: R2 -> R2 be defined as follows 

(yi, y2) = E(x{, x2) = (-xu x2) . 

By assumptions we have for y e Q2 

ETu(y) = - ^ ( F - ^ y ) ) , 

ET12(y)= T12(F~\y)). 
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Given v e f J ( ß 3 ) x ^ 2 ( -2 3 ) , we set for xeQ{ 

v1(x)= » ^ ( F ( x ) ) , 

v2(x) = v2(F(x)) . 

Then 

[E Tu(y) vM(y) + E T12(y) (v l j2(v) + ^2,i(y)) + F T 2 2(V) i?2,2(y)] dy = 
Jfl2 

( - T l l ( X )^ l . l ( X ) + T12(X)(-^l,2(X) - htl(
X)) - T 2 2 W ^ 2 . 2 W ) d x 

and we get 
(FT, e(v))0fQ3 = (T,e(v))0ffll + (FT,e(v))0J?2 = 

= (T> eOOkflx - (T> fi(?))o,i2, = (T> e ( v " ^))o,fli • 

The last term, however, vanishes, since T e F(-3j) and v — v|fli e ^ ( . Q j x TT 2(01).. 
Hence Div FT = 0 in G3 and tv(Er) = 0 on dQ3 follows. Moreover, 

(Er12,l)0fl23 = (T 1 2 , 1)0 > I J I + (ET12, l)0.iQ2 = 2 (T 1 2 , l)0>fl l = 0 , 

by virtue of Lemma 4.2. Consequently, we have ET e T(Q3). 

Evidently, the lemma remains true when S is only parallel with the axis x2. The case 
when S is parallel with xx can be handled in an analogous way. 

Lemma 4.4. Let Q he a rectangle. Then the set 

rn(C°°(iQ))4 

is dense in T with respect to the || • || 0-norm. 

Proof. Let T e Fbe given. Using Lemma 4.3 four times, we can get an extension FT 
defined on some domain Q* z> Q, such that 

Div ET = 0 in Q* . 

The domain Q* can be chosen for instance in the way shown in Fig. 2. 

ӘÄ 

Ғig. 2. 
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We make a regularization of the function FT using the kernel 

^ ^ x 2 X ( ) = j e x p ( H 2 / ( | > ' | 2 - x 2 ) ) for 

[0 for \y\ = x , 

where A = const > 0 and x < dist (dQ, dQ*). So let us put 

\y\ < K > 

R*Eт(x) = í Жx(x-ç)Ex(ç)åç 
J ß* 

As the functions FTn and FT22 are antisymmetric functions with regard to the lines 
x. = 0, Xj = a and x2 = 0, x2 = b, respectively, we have 

(4.12) 

Setting 

R.Er, ,(0, x2) = R.Er, .(a, x2) = 0 , x2 e [0, />] , 

R^ET^ťX!, 0) = RxEx22(xu b) = 0 , x, e [0, a] . 

RXF т 1 2(x) dx , a* = cx(mes ß)~ Ҷ ' j , 
Q \l j 0/ 

we define 

T* = RXFT - a* . 

Then obviously TX e (C°°(D))4 and (see [8], p. 450) 

(4.13) Div xx = Div RXFT = 0 in Q 
We have also 

(4.14) (*i2> l)o = F^12dx - ox = 0 . 

Let ¥ e f " 1 x f - ' 2 . Then we may write 
2 

(4.15) OV(T*), yt>> = (T*, 8(V))0 = X 
; .J = I 

TyVj», d.s-

= - T22v2 dxx + T22v2 dxj + x*uvt dx2 - T^v, dx2 = 0 , 
J SI J S3 J S2 J S4 

using e.g. T2 2 = i\xFT22 = 0 on St and S3 by (4.12). Since xx satisfies (4.13), (4.14), 
and (4.15), we have xx e T on the basis of Lemrna 4.2. 

Defining FT = 0 in R2 — Q*, we obtain for x ~> 0 

and therefore 

ÍKE* - *\\O,Q á l ^ x ^ ~ -ET||0fíj. -+ 0 , 

K | = | ( ^ X ^ 1 2 - ~12> l)o| = C[|RXET12 - T12j|0 -> 0 , 

||т* - т | 0 = ||RxEт - «* - т | | 0 â ЏxEx - т|| IU"II o + | | a" | |o 
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P r o o f of T h e o r e m 4.L 1°. For giwen t e T w e find by Lemma 4.4 a sequence 

(4.16) T " e T n ( C T O ( 0 ) ) 4 , r" -> t in (L2(;Q))4. 

As DivT" = 0, there exists an Airy function z" e C°°(.Q) such that (see [11], p. 39) 

T" = Q(z") . 

For each v e Kit holds that 

0 = (T", e(v))0 = f (», f,(z") + i>t tr(z")) ds , 
J on 

where (see Lemma 4.1) 

ф " ) = v . ( т " . v ) = ^ , „£ - )__ - f l í _ . 
OS Os Ov 

Hence 

(4,17) °-Ш-
d2z" d2zn\ J 

_—__ __ ^ ) rj5 

OV ^(5Vy 

Let us choose v such that vr = 0 and the support of the trace of vV is in S< (i.e. we 

choose vj = 0, v2 e Y'2). Thus we get 

д2zn 

ę ds = 0 VťB є yf̂ "2 . 
Si l У OЅ" 

Consequently, we have 

д2zn 

os 
= 0 on S,, i = 1, 2, 3, 4 . 

Hence z"L. is a linear function. We shall prove that there exists a linear function 

p e Pi(Q) such that p\s, = z"|^., i = 1,2, 3, 4. Obviously, there exist _/, r linear, i.e. 

q(xu x2) = a 0 + ajxj + a2x2 , r(xi, x 2) = b0 + b^j + b2x2 , 

such that 

q\Sl = z%, i = 1,2, 

r | S | = z" | S i , i = 3, 4 . 

Choosing v = w ' e Kin (4.17), where w' are given by (4.7), we find 

^ - á s 
'dzn 

Si 3$ dv [_dv 

(st and 5f_ J are the end-points of S,). Thus we have for example 

dx7 dx? 
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that is a2 = b2. Analogously we show that ax = bt and from the continuity of z" 

weobtain a0 = b0. Altogether, g = r = p. As the Airy function z" is determined by T" 

uniquely apart from a linear function, we may set z" = 0 on dQ. 

By (4.16) we know that 

т" = O(z") -• т in (L2(fl))4 for n 00 . 

Therefore, the second derivatives of z" are bounded in L2(fl) and the well-known 

estimate holds 

C. | |-" | | 2 :g \z"\2^C2 V». 

Consequently, there exist a subsequence (zm) and z e H2(Q) such that for m -> oo 

(4.18) z m - z (weakly) in H2(fl), 

(4.19) ^ " O - T in (L 2(fl))tm-

Passing to the limit with m -> oo in the definition of the second derivatives 

(Zm -, p ) 0 = (z"\ 9 f y ) 0 V<P G ^ ( f l ) , 

and making use of (4.18) and (4.19), we arrive at 

( - l ) l + ' (rkh cp)0 = (z, ^ f V ) 0 V<p e 2{Q), 

where k = 3 — i and / = 3 — j , i.e. T = g(z). 

It remains to show that z eZ. As the imbedding H2(Q) Q C(fl) is completely 

continuous (see [15], p. 107), by (4.18) zm converges to z in C(fl) (strongly — see 

[12], p. 178). Then z = 0 on dQ follows from zm = 0 on dQ for every m. 

2°. Let z e Z be given. First we show that the set V n (C°°(fl))2 is dense in V. 

Using (4.8), any u e Vcan be written in the form 

u = I cJwJ + (vi> °Y + (0' V2)T > ^er1. 

According to [5], p. 618, there are sequences |v"}^ = 1 such that 

v'l 6 TT'' n C°°(fl) , ||vf - v^l, -> 0 , i = 1, 2 . 

Setting 
4 

*" = I c j w i + (^i ?0)T + (0,v" 2)T, 
1 = i 

we find that 

(4.20) v" e V n (C°°(fl))2 , v" -> u in (H1 (&))2 . 

Let us consider the product 

/„ = (Q(Z), B(V% = (z,22»î,1 - Z,12(»ï,2 + ^2,l) + Z , H ^ 2 ) d X ' 
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Integrating by parts, we obtain 

(4.21: [ Z , 2 ^ 1 , 1 ^ 2 ™ » l , 2 V l ) + Z,í(Vl,2Ví ~ y 2 , l V 2 ) ] ^5 = 

J ÕQ 

(Җ 

дs 
i. дv*2 \ 

+ z_2 — ds = 

J S Î 

Ov, cv2 

дx~> 

áx7 + 
av" 

Z , 2 " ™ dxл -
ðx, 

ðІЛ 
dx, 

S4 

M . u л 2 > 
OX? 

where <~z/Os = 0 on oQ has been used. As vn e V, the functions v" are constant on 

every Sh i = 1, 2, 3, 4. Thus all the integrals in (4.21) vanish. Making use of (4.21), 

we find that 

0 = limIn = (Q(Z), e(u))0 . 
/I -> co 

As u was an arbitrary element of V, D(z) e Tholds. m 

Theorem 4.2. Let Q be a rectangle and let F2 = dQ. Then 

M = co(V). 

Proof. An immediate consequence of Theorem 4.1 is 

(L2(Q))%m = e(V) © Q(Z) , 

where Z and Vare defined by (4.1) and (4.8), respectively. Thus the proof is identical 

with that of Theorem 3.1. m 

5. INTERNAL FINITE ELEMENT APPROXIMATION OF THE DUAL PROBLEM 

Let us recall that the dual problem consists in minimizing the functional (2.5) 

over the space of equilibrium bending moments M. In both previous sections we have 

proved that 

M = o>(V) , 

under the assumptions of Theorem 3.1 or 4.2, which will be kept in the sequel. Let 

us consider an arbitrary finite element space Vh such that 

(5.1) KAc=V, 

(h is the usual mesh parameter). Introducing the space of equilibrium finite elements 

(5.2) M„ =-(o(Vh), 

we see that Mh c: M. We may therefore define internal finite element approximations 

of the dual problem as follows. Find kheMh, which minimizes the functional (2.5) 
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over the space Mh. Then the sum kh + k will be called the approximate solution of 
the dual problem. 

Theorem 5.1. Let {Vh} be a system of finite element subspaoes of V such that the 
union \JVh is dense in V(with the topology of (Hi(Q))2). Then 

h 

\\k — kh\\0 -> 0 for h -> 0 , 

where k minimizes the functional (2.5). 

Proof. By Theorems 3.1 or 4.2 there exists ve Vsuch that k = a>(v). Using now 
Cea,s Lemma ([3], p. 104) and (5.2), we obtain 

C||A - A„||0 S inf \\k - ^ 1 0 = inf ||o>(v) - co(vh)\\0 ^ 
pheMh vheVh 

^ inf Iv — vh\x -> 0 for h: -> 0 , 
vh£Vh 

where C > 0 is a constant independent of h. u 

From [5], p. 618, it follows that 

(5.3) Vn(Cco(Q))2 = V, 

(the bar denotes the closure in V). Thus it is not difficult to verify the density as­
sumption of Theorem 5.1 for polygonal domains and some C°-elements (see e.g. [3], 
Chap. 3.2). 

Let us consider the case F2 = 0 and assume that Fx and F3 are connected. We 
shall describe a construction of the dense subset \JVh cz Ffor a curved boundary dQ 

h 

m case of linear finite elements. Consequently, Mh will consist of piecewise constant 
fields. 

Definition 5.1. A couple (QJ F3) is said to be from the class ^ ( 2 ) , if 

(i) Q cz R2 is a bounded domain with a Lipschitz boundary, which consists of 
a finite number of arcs from the class C(2). The set of the end-points of these arcs 
will be denoted by 01,2. 

(ii) the part T3 of the boundary dQ consists of a finite number of convex and 
concave arcs. The set of the end-points of these arcs will be denoted by M3. 

An arc T a dQ is said to be convex (concave), if there exists a convex domain 
Q0 c Q (Q0 cz R2 - Q) such that F cz BQ0. 

Let u> describe now the way of triangulation of a domain from the class ^ ( 2 ) . 
The part F3 of the boundary dQ will be approximated by a "polygonal" curve 
F3/J cz Q consisting of a finite number of straight-line segments, the length of which 
does not exceed h. Each of those segments is a chord or a tangent of a convex or 
of a concave arc, respectively (see Fig. 3). 
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If F3 is a closed curve, we require T3h to be also a closed curve. Moreover, we 
demand 9t1 u 03 c F3/J n F3. 

The subdomain of Q, bounded by Tx and F3/l, will be denoted by Qh, and we define 

Dh = Q-Qh. 

Now /^"j. will denote the triangulation of the domain Qh generated in a standard 
way, assuming that the "triangles" adjacent to Fx may have at most one curved side. 
The inner triangles are "straight" only. 

Ғig. 3. 

Furthermore, we shall always assume the validity of the so-called conformity con­
dition of a triangulation, i.e. the interior of any side of any triangle K e STh is disjoint 
with the set 0lx u ^ 2 u 0}3. Each segment from T3h — F3 coincides with a side of 
one triangle K e 2Th. 

Let us define 

(5.4) V, = {v e VI v\Dh = 0, v\K e (P^K))2 \/K e 3Th) . 

Lemma 5.1. Let (O, F3) e r€(2) and let Vh (defined by (5.4)) correspond to a regular 
family of triangulations of Qh. Then \jVh is dense in V. 

h 

Proof. Let weV and S > 0 be given. Using (5.3), we find v e Vn (C°°(D))2 

such that 

(5.5) ||w - v||j < O72. 

By [9], p. 58, we can find an approximation vh of v such that vh e Vh and 

|| v - ^ 1 , < C(v)h. 

The righ-hand side is less than b\2 for sufficiently small h. Combining this estimate 
with (5.5), we arrive at the assertion of the lemma. m 

For an approximation of V by finite element spaces of higher order curved elements, 
we refer to [20]. 
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Next we shall describe a way of finding kh. Let Vh c V be an arbitrary finite 
element space with the basis {v 1}"^. Obviously, dim Mh ^ dim Vh follows from 
(5.2). However, for F3 =# 0 (F2 = 0) we have 

dim Mh = dim Vh = n , 

since by Remark 3.1 and (5.1) 

V°n Vh c V° n V= {0} , 

i.e. if v̂  e V,,, then a>(vh) = 0 implies vh = 0. In this case {co(v[)}n
jz=1 is a basis of Mh 

and 

AA = 2 > X O > 
i = l 

where c1, ..., c" is the solution of the following system of algebraic equations with 

a symmetric and positive definite matrix 

£ e>(.4 -* . a>(v% o(v% = (A ' 1 . cD(v'), I ) 0 , i = 1 , . . . , n . 
j = i 

In the case F3 = dO, it is easy to see that 

(5.6) V° cz V. 

We show that (5.6) holds in the case F2 = dQ as well. According to (4.7), we get 

w1 + w3 = ( rt ) , w2 + w4 = ( . ] , bw3 — aw2 = ( 

V0/ VJ \~x 

Hence, any v e V° can be expressed in the form 

n 

i = i 

where w' e V. 
Therefore, in both cases Ft = drQ or F2 = 50, the set {a)(vl)}n

i=l is not a basis 
of Mft in general, since V° n V,, may contain some non-zero element. Let us suppose 
that V° c= Vh. Then 

dim Mh + 3 = dim V,, , 

and three convenient functions have to be omitted from the set {|*'}"= t = {OJ(V)}"= 1 

to obtain a basis of Mh. This can be done for instance in the following way. 
Let us assume that there exists a nodal point y = (yl9 y2)

T such that 

(5.7) W(y) = ( l , 0 ) T , v«(y) = (0, 1)T , v ^ ) = (0, 0)T j${p,q}. 

As (v'} is the basis in Vh(=>V°), there exist {a'}, {/?''}, {>•'} such that 

(») i«'v-(i). !/'" = (:). fA--(_-;-). 
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With the help of (5.7), we obtain 

(5.9) ap = J , aq = 0 , Pp = 0 , p* = 1 , yp - f = 0 

and 

(5.10). / * 0 for some r e { l , . . . , n } . 

Applying the operator co to (5.8), a simple calculation leads to the result that 

(5.ii) f?= - x « y , /«" = - ! /?y, 
."*/>,q » * p , q 

(5.12) y V = - X y y . 
i *p,q.r 

Let ftheMh be arbitrary. Because {/•'}?=] generates the space AfA, we may write 

by (5.11) 

fk = i «y = E >/y, 
i = ] i + p,q 

for some [£*}, {?/'}. Finally, from (5.12) and (5.10) we come to 

ft = ^ + z *y - i o1' 
i + p,q,r ij~p,q,r 

for convenient {C'j. From this expression we conclude that {^'}"==1 — [fip, nq, fir} 

is a basis of AL̂ . 
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S o u h r n 

VNITŘNÍ APROXIMACE BIHARMONICKÉ ÚLOHY 
KONEČNÝMI PRVKY DUÁLNÍ VARIAČNÍ METODOU 

IVAN HLAVÁČEK, M l C H A L KŘÍŽEK 

Na oblastech s po částech hladkou zakřivenou hranicí je vyšetřována konformní 
metoda konečných prvků pro duální variační formulaci biharmonického problému 
s kombinovanými okrajovými podmínkami. Tak jsou v okrajové úloze pružné 
desky přímo počítány ohybové momenty. Pro konstrukci konečných prvků se používá 
vektorový potenciál a prvky třídy C°. Je dokázána konvergence této metcdy (bez 
předpokladu regularity řešení) a popsána její algoritmizace. 
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