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SVAZEK 30 (1985) APLIKACE MATEMATIKY CisLo 4

INTERNAL FINITE ELEMENT APPROXIMATION IN THE DUAL
VARIATIONAL METHOD FOR THE BIHARMONIC PROBLEM

IvaN HLAVACEK, MIcHAL KRiZEK

(Received May 25, 1984)

I. INTRODUCTION

The aim of this paper is to present a conforming finite element method for the dual
variational formulation of the biharmonic problem with mixed boundary conditions
on domains with a piecewise smooth curved boundary. We use C°-elements while
any conforming primal finite element method for the biharmonic problem requires
C'-clements, which are more complicated especially for curved boundaries [13, 21].

Note that by the dual method we calculate all second derivatives of the solution of
the biharmonic problem, which are often more interesting than the solution itself.
For instance we can get bending moments of an elastic plate.

In the next section we introduce a “pure” equilibrium model for the biharmonic
problem. We justify the so-called static-geometric analogy ([6, 19]) by proving the
existence of a vector potential v e (H'(2))* of an equilibrium bending moment g,
which satisfies the equilibrium condition div Div g = 0 in the domain Q and some
conditions on a part of the boundary 0Q (Sections 3and 4).Then we present (Section
5) a general dual finite element method for the biharmonic problem (employing
polynomials of arbitrary order). We prove the convergence of this method in the
I?-norm without any regularity assumptions on the solution. The paper generalizes
the results of [1 1], where the dual finite element analysis of a clamped plate problem
was studied on polygonal domains. Let us note that piecewise linear equilibrium
elements have been proposed in [7, 19]. Bending moments can also be obtained by
mixed finite element methods [1, 2, 3, 4].

Let us introduce some notations. Throughout the paper, @ < R? will always be
a bounded domain with a Lipschitz boundary 0Q (see [16], p. 17). Let v = (v, v,)"
be the outward unit normal to 0Q and let T = (—v,, v{)". By P;(Q) we mean the space
of polynomials of the order at most j defined on Q. Notations H*(Q) (k = 0, integer)
are used for the Sobolev spaces of functions, the generalized derivatives of which up
to the order k exist and are square integrable in Q. The usual norm and seminorm
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in HY(Q) and also in (HNQ))" (p
respectively. The scalar product in
symmetric tensors

I, integer) are denoted by | -], and || g,
[’(2))” is denoted by (-, *)g.qo. The space of

I

(@) = {re(IX(Q) |t =1T;

will be equipped with the scalar product

[N}

(T, )00 = Z ( Tij» l‘fj)o.n for 7,pc (L (Q )s»m‘

ij=1
For simplicity, the subscript o Will sometimes be omitted. Let us introduce the opera-
tor ¢ (H'(Q))? — (2(Q))%,, defined by

s» m

z;(v) — ("1.1~ ‘z‘(“1.z + Uz.l)) v = (U11 UZ)TG(HI(Q))Z

Syni., U,

where v, = 0o [0x,.
The space of infinitely differentiable funcnons with a compact support in Q will
be denoted by Z(Q).

Further, let g e (I?(Q))* be arbitrary. If *
(1.1) (r, E(V))O = (g, v), Vve (f/(Q))Z
holds for some 7€ (L*(Q))S,,,, we say that the divergence of the tensor function ©

exists in the sense of distributions in Q and define
Divt = —g.
Evidently, for smooth © we have

. _ T
Divt = (Tn,l + Ty20s Ty2, F r22,2)

2. DUAL VARIATIONAL FORMULATION OF THE BIHARMONIC PROBLEM

Let us suppose that the boundary 0Q consists of four mutually disjoint parts 2,
r,, r,, Iy such that
=R vl vl,uly,

where #, is the union of a finite number of points and I'}, I',, 'y are open in 0Q.
Assume that I'; & @ or I', is not contained in a single straight line, and let I", be
piecewise C*?).

The biharmonic problem for an elastic homogeneous and isotropic plate with
mixed boundary conditions can be formulated [ 14, 16, 18] as follows: Find z € C*(Q)
such that

(2.1) A2z =f/D in Q)
=0, dzfor=0 on [,

=0, JMz)=0 on I,,

.%(z =0, A(z)=0 on I,
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where z is the deflection,
AM(z) =0 Az + (1 — o) ("%Z.n + 2vivpz 4, + "32,2:) )

N(z) = - 04z +(1 - o) 6("1"2(2.11 — Z,,) “A("jjw"g)f.zz) .

v 0t

0lov and 0ot is the normal and tangential derivative, respectively, 0 < ¢ < 1/2 is
the Poisson constant, f is a given load (f e L*(Q) or more generally f € (C(Q))'),

__2ER
3(1—a?)’

E is Young's modulus of elasticity and 2h is the (constant) thickness of the plate.

For the primal variational formulation of (2.1) let us introduce the space

(2.2) zZ= {zeHZ(Q)I z=0o0nTI,ur,, -‘;—z- =0 on rl},

V
and the operator hes: H*(Q) — (I*(Q))¢,m,
hes z = (z'“’ Z‘”).
Z125 Z,22
Further, let A = (Aijkl)?,j,k.l=l’ where Ay, = Az;5,=D, A, =Do, A, =
= D(l - U)/Zv At112 = Azz21 = 0, and let
(2-3) Ajikl = Aijkl = Aklij .
Then we have
(2.4) (A mmo = Clps Vie (I(Q)on -
Here we write © = A . g, when
2
Tij = Z Aijkhukl
k=1

for 7, pe (L(2))im-
Let us recall [ 10, 16] that the primal problem consists in minimizing the functional
(of the potential energy)

I(z) = (A . hes z, hes z), — {f, z)

over Z (¢-, - denotes the dual pairing between (H*(2))" and H*(Q)).
Henceforth, we introduce the set of statically admissible bending moments

M(f) = {ne(I2(Q))s.] (1, hes z)o = <{f, 2> Vze Z} .
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The dual problem consists (see [1, 16]) in minimizing the functional (of the
complementary energy)

J(m) = HA™'. m, m),
over M(f), where A" is the inverse to A.

For A™! the relations analogous to (2.3) and (2.4) hold, and we have AT =
= A7), = D1 =6 L Arh, = —oD (1 — 6) L A, = D1 — o) [2,
Ax_nlnz = Az_zlzx = 0.

We define the space of equilibrium bending moments in the following way

M = M(0).
Note that for smooth g € M it holds that
divDiv g = piyy 11 + 2812,12 + 2222 = 0.

Clearly, the dual problem can be formulated in an equivalent way: Given 4 € M(f)
(see Remark 2.1 below), find 4 € M which minimizes the functional

(2.5) J(w) = HA™" o) + (A7 p, A,

over the space M. The tensor 4 + 7 is considered to be the solution of the dual prob-
lem and to any 4 € M(f) there exists éxactly one 4. Moreover, we have the following
equality (see [16], p. 250)

%

A+ Z4Z=A.hesz,
where Z is the solution of the foregoing primal problem.

Remark 2.1. We shall describe a way of finding some 4 € M(f) in practical cases.
Let all the functions occurring below be sufficiently smooth so that the corresponding
symbols have the correct sense, and let us look for 4 in the form

i=¢+y.
We define ¢ = (¢,;) € (I(Q))Z,, by

sym

Q=@ =0,
X2 C_

P2a((ess 1) = f J Tl mydndé, (v, x2)e @,
0 0

where f = fin Q and f = 0 in R* — Q.
We introduce the operator w: (H'(Q))> - (I*(Q))s

sym
o) = (D22 THo >)
sym., 14
We put
v = o),
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where v e (H'(Q))? is an arbitrary function satisfying
oV).v=—¢.v on I,uTl,,
(Diva(v)).v= —(Dive).v on I;.

Then by the Green formulae we get for ze Z

(¢ + ¥, hesz), = (— Div(p + ¥), grad z), +J (gradz)" (¢ + ¥).vds =

Le]

= (div Div (¢ + (v)), z)o —J z(Div (¢ + o(v)).vds +

Irs

+ ‘[ (grad 2)" (¢ + (v)).vds = (divDiv @, z), = (f, z)o = {f, z),

thatis 2 = ¢ + ¥ e M(f).

3. EXISTENCE OF A VECTOR POTENTIAL OF EQUILIBRIUM
BENDING MOMENTS

In this section we shall rectrict ourselves to the case I', = @ (the case 0Q = I',
of the simply supported plate will be discussed in Section 4). Let us define the space

(3.1) V={ve(H'(Q))?| v=0onTI,}.

In the following theorem we show (under certain assumptions) that for any equi-
librium bending moment ue M there exists a vector potential ve V such that
p = ov).

Theorem 3.1. Let I'; and I'; be connected. Then
M = o(V).

Proof. For an arbitrary p = (u;;) € M let us set

p* = ( Ha2, —ﬂm).
—H21, K11
Then we have

(32) (#*, 0(2))o = (m, hesz)y =0 VzeZ,

where Z is defined by (2.2) and
222, —Z212
o(z) = ’ ’ .
( ) <_Z,127 2,11)
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As I'y and I'y are connected, it holds that (see [11], p. 51)
(33) (L(Q))om = &(V) ® o(2) -

Hence, by (3.2) there exists v € V such that p* = ¢(v). Thus g = w(v) and ue w(V).
Conversely, let v e V be given. Then by (3.3) we obtain

(o(v), hes z))y = (e(v), 0(2))y =0 VzeZ.
Therefore, w(v)e M. g

Remark 3.1. We can easily ascertain as in [16], p. 78, that {(1,0)7, (0, 1)T,
(x5, —x,)T} is a basis of the space

(3.4) Vo = {ve (HY(Q))] w(v) = 0} .

Thus for I'; + 0 (I's is open in 0Q), the vector potential is unique, while for I'; = 3Q
(a clamped plate) it is unique apart from a function of V°.

Remark 3.2. As a consequence of Theorem 3.1 we get
(Z(Q)im = o(V) @ hes Z,

sym

when I') and I'y are connected.

4. SIMPLY SUPPORTED RECTANGULAR PLATE

Throughout this section we shall assume that I, = dQ. Consequently, the space Z
(used in the definition of M) will have the form

(4.1) Z = {ze H Q)| z = 0 on 0Q}.
First we prove the following lemma.

Lemma 4.1. Let Q be an arbitrary domain and let an open part I' <= 0Q be from
C?. Assume that z € C*(Q). Then

Jz 0%z
(4.2) t(z)=v.(e(z).v) = k 5 + FEs on I,
oz 0%z
4.3 t(z) =t.(0(z2). V) =k———— on I,
53) ()= le). ) = k- 22
where k is the ourvature of I' and 0z[0s = 0z|ot = —v,z ; + v,z ,.

Proof. As v = (t;, 7,)" = (—v,, v,)", we have

0z

(4.4) (e(z)-v)y = 011(2) vi + 012(2) v2 = z 501, + 2 4,7, = 7. grad (z,) = Eb—‘g ,
s

I
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(4-5) (Q(Z) V), = 921(2) vy + sz(z) Vo = —IZI T —Z T =
= —t.grad(z ;) = — 92 .
Furthermore, it holds that

1(z) = v.(o(z).v) = vi(e(z) . v), + valo(z).v), =

2

= Tz(Z.zz'fz + Z,IZTI) + Tx(z,nfz +zZaTy) = Y T
=1

Using Frenet’s formulae ([17], p. 308)

i N ) ) 0z
=247 + 20Ty T, + 20T Ty + 2575 — 2 kvy — z kv, = 1(2) — k—,
v

which proves (4.2).
From (4.4) and (4.5) we have

0 0z
It(‘z) = TI(Q(Z) . ")1 + TZ(Q(Z)- "')2 =T P2 _ T, U—*‘ s

Js as
o N
0 [0z 0 zZ, 0z 5
IO S B —T(z.lfz_z.z":l): =Ty =+ Ty =z kv, — 2k =
os \0v as 0s 0s

=1z) — k ¢ ,
ds
which proves (4.3). o
Henceforth, we shall investigate only a rectangular plaie, which is one of the most
important cases.
Let us introduce the space (cf. (1.1))

Qo = {re(*(Q))4 Dive =0 in Q},

sym

and the following subspace of Q,

(4.6) T = T(Q) = {te(L(Q))4n] (. &(v))o = 0 Wve V],

where
V= {ve(HY(Q))

. 1
Vas, = i £ =1,2,3,4, ceR',

v, = 7. vis the tangential component of v and S; are sides of the rectangular domain
Q (see Fig. 1).
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Definition 4.1. Let Q be a rectangle with the sides S, S,, S3, S4. Introduce the
following spaces

Vi=9YQ) = {v,e H'(Q)| v, =0 on S, US;},
V2 =9HQ) = {v,e H'(Q)| v, =0 on S, US,}.
For t€ Q, we define the funotional t,(t) e (y#"* x y¥"?) by the relation
(1), yv> = (7, 8(v))o, ¥ = (vy, 0,)7, ‘
where y: (H'(Q))" — (H'*(0Q))", p = 1, 2, denotes the trace operator.

S3

S, fQ S,

Fig. 1.

S1

Remark 4.1. From the definition of Q, it follows that #,(t) does not depend on
extensions of yv; and yv, into the interior of Q. The notation ¢, is in agreement with
the fact that it represents an extension of the mapping

tov.(r.v) = 1(1),
which is defined for all symmetric © € (C(Q))*.
Theorem 4.1. Let Q be a rectangle. Then
T = o(2),
where T and Z are given by (4.6) and (4.1), respectively.

The proof is based on three auxiliary lemmas.

Lemma 4.2. Let Q be a rectangle. Then t € T if and only if it satisfies the following
three conditions:
(a) Dive =0 in @,
(b) (t12,1)o = 0,
(¢) 1,(t) = 0 (in the sense of Definition 4.1).

Proof. Let us write 2 = (0, a)-x (0, b) and choose w/ e (P,(2))%,j = 1,2,3,4,
such that
wi=1onS;, w/=0o0ndQ2-S5;.

We have

(4.7)
-0 wrm(1) - (4) -(. )
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Then we may write
4

(4.8) V:‘Zlcjwj-f"//‘x“lfz, c;eR'.

j=

For 7€ T we get

0= (1, e(w")), = — l‘[ 7., dx,
bJo

since
0 B %’
(4.9) g(w') = ,
1
- 0
2b

i.e. the condition (b) holds. The condition (a) follows from (1.1) and (4.6).
Let us choose ve ¥'! x ¥°2, that is v, = 0 on 0Q. Then
0= (. &v))o = <1,(2), pv),
which is the condition (c).

Conversely, let t € (I2(Q))3,, fulfil (a), (b), (c). As &(w’) is of the form (4.9) for every

sym
j =1,2,3,4, we find by (b) that
(4.10) (7, e(w))o = const,j T, dx = 0.
(2]

For any ve 7! x ¥ the conditions (a) and (c) imply

(4.11) (7, &(v))o = <t(t), vy = 0.
The combination of (4.10) and (4.11) with the use of (4.8) yieldste T. o

Lemma 4.3. Let Q, and Q, be identical rectangles having one common side
S = @, n Q,, which is parallel with the axis x, or x,. For t € T(Q,) let Et be defined
on Q5 =int(Q, U Q,) by the extension of t (Et|o, = 1) such that Et; (i = 1,2)
is an antisymmetric function and Et,, is a symmetric funotion with respect to S.
Then Ex e T(Qs).

Proof. Let S lie on the axis x, and let F: R? — R? be defined as follows
(1, ¥2) = F(xy, x5) = (= x4, %) .
By assumptions we have for y e Q,
Ety(y) = —tu(F7'(»),
Etp(y) = wa(F7'()-
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Given ve ¥ (Q;) x ¥?(Q;), we set for xe Q,

By(x) = —0y(F(x)),
5,(x) = v,(F(x)).

Then

J [E 21a(0) 02.4(9) + E 712(0) (03.2() + 02.4() + E 123(v) 03 2(3)] dy =
= J (=101(0) By 4(x) + 102(x) (=81 2(x) = T2,4(x)) = 722(x) B 5(x)) dx

and we get
(E7, &(v))o.0, = (1, (V))o.0, + (ET,8(¥))o.0, =
= (, 3("))0.91 — (= 3(;))0.9, = (z, 5(" - ‘;))0.01 '

The last term, however, vanishes, since € T(Q,) and v — v|5 € 77'(Q,) x ¥7(2,).
Hence Div Er = 0 in 25 and r\,(Er) = 0 on 0Q; follows. Moreover,

(Efno ])0.93 = (712: ])0.9. + (Ele, ])0.91 = 2(T12» l)049l =0,

by virtue of Lemma 4.2. Consequently, we have Et € T(Q;).

Evidently, the lemma remains true when S is only parallel with the axis x,. The case

when S is parallel with x, can be handled in an analogous way.

Lemma 4.4. Let Q be a rectangle. Then the set
T (C*(Q)

is dense in T with respect to the ||+ | ,-norm.

Proof. Let r € Tbe given. Using Lemma 4.3 four times, we can get an extension Et
defined on some domain Q* > @, such that

DivEr =0 in Q%.

The domain Q* can be chosen for instance in the way shown in Fig. 2.

a ¥

NP

V.

M

Fig. 2.
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We make a regularization of the function Et using the kernel

a2 o ) = [P P =) tor [y <,
) g 0 for tvl = x,

where 4 = const > 0 and » < dist (02, 0Q2*). So let us put
R,E t(x) :J H(x — &) Ex(E)dE.
Q*

As the functions Et,, and Et,, are antisymmetric functions with regard to the lines
x; =0,x; =aandx, =0, x, = b, respectively, we have

(4.12) R,Et(0,x,) = R,Et; (a,x,) =0, x,e[0,b],
R,Et,,(x;,0) = R,Ety,(x,,b) =0, x,€[0,a].
Setting
P4 -1 0’ 1
¢, = | RET,(x)dx, o =c(mesQ) ,
o I, 0
we define

v = R, Et — a*.

Then obviously v (C*(2))* and (see [8], p. 450)

(4.13) Divt* =DivREt =0 in Q.
We have also
(4.14) (v, 1), :J R,Et;,dx — ¢, =0.
o}
Let ve ¥'' x ¥2. Then we may write
(4.15) (), yo) = (77, &(v)) = Z J Ty ds =
=1 Jen

= ~f 50, dxy + J 73,0, dx; +J 77,0, dx, —f 1§50, dx, = 0,
Sy s; 5 Ss

using e.g. 15, = R,Et,, = 0 on S, and Sy by (4.12). Since 7" satisfies (4.13). (4.14),
and (4.15), we have t* e T on the basis of Lemma 4.2.
Defining Et = 0 in &* — Q% we obtain for x — 0
[R.ET — t]g.0 < |R.ET — Etfg 0. — 0,
[Cxt = ‘(RxE'Clz = Ti2s l)ol = CHRRETIE - 14'12“0 -0,
and therefore

I = o = [ReEx — @ = <],

IIA

nRxEr — r“o —+ Ha”ﬂo -0. &
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Proof of Theorem 4.1. 1°. For given 7€ T we find by Lemma 4.4 a sequence
(4.16) TeTn (CHRQ)*, «"—r in (LIX(Q)*.

As Div 1" = 0, there exists an Airy function z"e C*(Q) such that (see [11], p. 39)

" = o(z").
For each v € Vit holds that

0 = (", ov))y = f (0, 1,(2") + v, 1,(")) ds,

where (see Lemma 4.1)
alzn

., \ (’)ZZH )
t‘.(z)z v.(r .v) =§ , t,(z): — bsﬁv.

Hence

4 N2 n 2 n
(4.17) 0=> v, LA v, g’z ds.
s\ 087 ds Ov

i=1

Let us choose v such that v, = 0 and the support of the trace of v, is in S, (i.e. we
choose v, = 0, v, € ¥"?). Thus we get

us

'}2 n
j i’\iz pds =0 VYoeyr?.
Sy

Consequently, we have

2._n
T2 0 on s, i=1,234.
Os?

Hence Z",s, is a linear function. We shall prove that there exists a linear function
p € P,(Q) such that P’s, = z"'gi, i =1,2,3,4. Obviously, there exist g, r linear, i.c.

q(x1, %) = ag + a,x, + x5, (X, X5) = by + byxy + boxsy,

such that
q{Si = Z”’S,— ) P = la 2 5
4

. — n PR
'lSi —Z‘S,-a i=13

Choosing v = w'e Vin (4.17), where w' are given by (4.7}, we find

A 2_n SHT]Si
0= 07z ds = 0;
5, 05 0v ov s,

(s,» and s;_; are the end-points of S;). Thus we have for example

d d
—_ (" \ _ n — p
4,2 dx, (z 'Sz/ dx, (Z ‘54) Fa2s
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that is a, = b,. Analogously we show that a, = b, and from the continuity of z"
we obtain a, = b,. Altogether, g = r = p. As the Airy function z"is determined by t"
uniquely apart from a linear function, we may set z" = 0 on 4Q.

By (4.16) we know that

v =p(z") >t in (LX(Q)* for n— .

Therefore, the second derivatives of z" are bounded in LZ(Q) and the well-known
estimate holds

Cilz’|. = |z’ = ¢, vn.
Consequently, there exist a subsequence {z"} and z e H*(Q) such that for m - o
(4.18) " =z (weakly) in H*Q),
(4.19) o(z")y = in (L(Q))n -

Passing to the limit with m — oo in the definition of the second derivatives
(%5, 0)o = (2" @,11)0 Vo 2(Q),

and making use of (4.18) and (4.19), we arrive at

(— ])Hj (Tlm ‘P)o = (Za (P,ij)o Vo e Q(Q) )
where k =3 — iand [ = 3 — j, i.e. T = g(2).

It remains to show that z e Z. As the imbedding H*(Q) C C(Q) is completely
continuous (see [15], p. 107), by (4.18) z™ converges to z in C(&2) (strongly — see
[12], p. 178). Then z = 0 on 0Q follows from z" = 0 on 0 for every m.

2°. Let z € Z be given. First we show that the set V n (C*(Q))? is dense in V.
Using (4.8), any u € V can be written in the form

U =
J

cm+(vl,0) + (0,07, vie?.

\1[\/;.

According to [5], p. 618, there are sequences | v}} ", such that

vie ¥ n CT(Q), |t - v, >0, i=12.

Setting
4
vi=3 ow + (uv],0)7 + (0,05)T,
=1
we find that
(/'-.20) vielVn (C“(Q))Z , V> u in (H‘(Q))2 .

Let us consider the product

I, (0(2) S(V" J(Z 2207 — z 12(”1 2+ V) )+ Z11 ;2>dx~
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Integrating by parts, we obtain

(4'2}} I, ZJ. [Z.Z(U'l'.l\"l - U’I’.ZVI) + 2,1(0’2',2"1 - U;,N’z)] ds =
o0

ov'y av5
= [ —z,— +z,—)ds =
Jeo s ds

~n d AN n o n
v ovl v av
=—| z,=tdx, + | z,--"dx, +| z,—Ldx, = | z,—2dx
277 L N 2 27 1 it 25
s, 0xy s, 0%, s, 0xy s, 0%,

where C:/(?s = 0 on Q2 has been used. As v" e V, the functions v} are constant on
every S, i = 1,2,3,4. Thus all the integrals in (4.21) vanish. Making use of (4.21),
we find that

0 = lim 1, = (o(z), &(u)),

n-+o

As u was an arbitrary element of V, g(z) € Tholds. g

Thearem 4.2. Let Q be a rectangle and let I', = 0Q. Then
M = (V).
Proeof. An immediate consequence of Theorem 4.1 is
(L(Q)om = 2(V) ® o(2),

where Z and V are defined by (4.1) and (4.8), respectively. Thus the proof is identical
with that of Theorem 3.1. g

5. INTERNAL FINITE ELEMENT APPROXIMATION OF THE DUAL PROBLEM

Let us recall that the dual problem consists in minimizing the functional (2.5)
over the space of equilibrium bending moments M. In both previous sections we have
proved that

M = o(V),

under the assumptions of Theorem 3.1 or 4.2, which will be kept in the sequel. Let
us consider an arbitrary finite element space V), such that

(5.1) Vic V,
(h is the usual mesh parameter). Introducing the space of equilibrium finite elements
(5.2) My = w(V,),

we see that M, « M. We may therefore define internal finite element approximations
of the dual problem as follows. Find 4, € M,, which minimizes the functional (2.5)

268



over the space M,. Then the sum 4, + 7 will be called the approximate solution of
the dual problem.

Theorem 5.1. Let {V},} be a system of finite element subspaces of V such that the
union YV, is dense in V (with the topology of (H'(Q))?). Then
h

HA - l,,”o -0 for h-0,
where A minimizes the functional (2.5).

Proof. By Theorems 3.1 or 4.2 there exists v e V such that 4 = w(v). Using now
Céa’s Lemma ([3], p. 104) and (5.2), we obtain

Cla = Mo = inf 12 = mo = inf Jo(v) — w@)]o =

HhEM ) vheVh
< inf v —v|;, >0 for h-0,
vheV

where C > 0 is a constant independent of h. g

From [5], p. 618, it follows that
(53) Va(CH@P = v,

(the bar denotes the closure in V). Thus it is not difficult to verify the density as-
sumption of Theorem 5.1 for polygonal domains and some C%-elements (see e.g. [3],
Chap. 3.2).
Let us consider the case I', = 0 and assume that I'y and I'; are connected. We
shall describe a construction of the dense subset UV, = V for a curved boundary 0Q
h

in case of linear finite elements. Conscquently, M, will consist of piecewise constant
fields.

Defirition 5.1. A couple (2, I';) is said to be from the class €@, if

(i) @ = R? is a bounded domain with a Lipschitz boundary, which consists of
a finite number of arcs from the olass C®. The set of the end-points of these arcs
will be denoted by X,.

(ii) the part I'y of the boundary 0Q coasists of a finite number of convex and
concave arcs. The set of the end-points of these arcs will be denoted by Z5.

An are T < 0Q is said to be convex (concave), if there exists a convex domain
Qy = Q(Q, = B — Q) such that I' = 0Q,.

Let us describe now the way of triangulation of a domain from the class #(*.
The part I'y of the boundary 0Q will be approximated by a “polygonal” curve
I';, = Q consisting of a finite number of straight-line segments, the length of which
does not exceed /1. Each of those segments is a chord or a tangent of a convex or
of a concave arc, respectively (see Fig. 3).
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If I'; is a closed curve, we require I', to be also a closed curve. Moreover, we
demand Z, U %, < I';, 0 T5.
The subdomain of Q, bounded by I'; and I';,, will be denoted by Q,, and we define

D,=Q-Q,.

Now 7, will denote the triangulation of the domain Q, generated in a standard
way, assuming that the “triangles” adjacent to I'; may have at most one curved side.
The inner triangles are “‘straight” only.

Furthermore, we shall always assume the validity of the so-called conformity con-
dition of a triangulation, i.e. the interior of any side of any triangle K € 7, is disjoint
with the set Z, U %, U #4. Each segment from I';, — I'; coincides with a side of
one triangle K € 7.

Let us define

(5.4) Vo= {veV|vlp, =0, vxe(P\(K))’ YKe T} .
Lemma 5.1. Let (Q, I';) € €% and let V,, (defined by (5.4)) correspond to a regular
family of triangulations of Q,. Then YV, is dense in V.

h
Proof. Let we V and & > 0 be given. Using (5.3), we find ve V n (C*(Q))
such that

(5.5) [w—v||, <d/2.
By [9], p. 58, we can find an approximation v,, of v such that v, € ¥, and
[v = vl < Clv) h.

The righ-hand side is less than /2 for sufficiently small /. Combining this estimate
with (5.5), we arrive at the assertion of the lemma. g

For an approximation of V by finite element spaces of higher order curved elements,
we refer to [20].
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Next we shall describe a way of finding 4,. Let V, = V be an arbitrary finite
inn

element space with the basis {vi};_,. Obviously, dim M, < dim V, follows from
(5.2). However, for I'y & 0 (I', = 0) we have

dimM, =dimV, =n,
since by Remark 3.1 and (5.1)
VRV, cVonVv=1{0},

n
i=1

i.e. if v, € V}, then w(v,) = 0 implies v, = 0. In this case {w(v')}
and

is a basis of M,

by =Y cto(v),
i=1

where ¢!, ..., ¢" is the solution of the following system of algebraic equations with
a symmetric and positive definite matrix

n

Y (AT (v, o))y = (A7 (V) E)y, i=1,...,n.

Jj=1

In the case I'y = 0Q, it is easy to see that
(5.6) Voc V.

We show that (5.6) holds in the case I', = 09 as well. According to (4.7), we get

wh + w? = 1, w2+w“=0,bw3—aw2: Y23
0 1 —X;

Hence, any v e VV° can be expressed in the form

where w'e V.

Therefore, in both cases I'y = 0Q or I', = 09, the set {ow(v')}}_, is not a basis
of M, in general, since V° n ¥V, may contain some non-zero element. Let us suppose
that ¥° = V,. Then

dimM, + 3 =dimV,,

and three convenient functions have to be omitted from the set {#'}!_, = {o(v')}}-,
to obtain a basis of M. This can be done for instance in the following way.
Let us assume that there exists a nodal point y = (y,, y,)" such that

(57) vi(y) = (1LO)T. vi(y) = (0, )T, v(y)=(0,0)7 Jj¢{p g}
As {v'} is the basis in V(2 V°), there exist {a'}, {B}, {7} such that

T N () N xz—yz>
5.8 v = s v = R v = .
( ) .';1o£ <0> iz‘lﬁ <]> i;ﬂ <~x1 + ¥y
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With the help of (5.7), we obtain

(5.9) =1, a?=0, P=0, pi=1, yP=7"=0
and
(5.10) Y 0 forsome ref{l,...,n}.

Applying the operator w to (5.8), a simple calculation leads to the result that

(5.11) wo=— Y gt p ==Y pipt,
i¥p.q i*p.gq
(5.12) VE = — e
i+p,q,r

Let p, e M, be arbitrary. Because {yi};':l generates the space M,, we may write
by (5.11)

p= 3 b=y '

=1 i*p.,q

for some ' &}, {n'}. Finally, from (5.12) and (5.10) we come to

mo=nw + Y npipt= Y

i*p.q,r i*p.q,r

nn

for convenient {{'|. From this expression we conclude that {u'}i_, — {p”, p’, "}
is a basis of M,,.
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Souhrn

VNITRNI APROXIMACE BIHARMONICKE ULOHY
KONECNYMI PRVKY DUALNI VARIACNI METODOU

IvaN HLAVACEK, MICHAL KRiZEK

Na oblastech s po ¢dstech hladkou zakfivenou hranici je vySetfovana konformni
metoda koneénych prvkl pro dudlni varia¢ni formulaci biharmonického problému
s kombinovanymi okrajovymi podminkami. Tak jsou v okrajové viloze pruZné
desky pfimo pocitdny ohybové momenty. Pro konstrukci koneénych prvki se pouziva
vektorovy potencidl a prvky t¥idy C°. Je dokdzéna kenvergence této metcdy (bez
predpokladu regularity feSeni) a popsdna jeji algoritmizace.

Authors’ address: Ing. Ivan Hlavdaéek, CSc., RNDr. Michal Kiizek, CSc., Matematicky ustav
CSAV, Zitna 25, 115 67 Praha 1.
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