Previous |  Up |  Next

Article

Keywords:
estimating parameters; testing hypotheses; Periodic autoregressive models; time-varying coefficients; Gaussian white noise; unknown mean; innovation; seasonal series; Gaussian maximum likelihood methods
Summary:
If the parameters of an autoregressive model are periodic functions we get a periodic autoregression. In the paper the case is investigated when the expectation can also be a periodic function. The innovations have either constant or periodically changing variances.
References:
[1] J. Anděl: Statistical analysis of periodic autoregression. Apl. mat. 28 (1983), 364-365. MR 0712913
[2] G. E. P. Box G. C. Tiao: Intervention analysis with applications to economic and environmental problems. J. Amer. Statist. Assoc. 70 (1975), 70-79. DOI 10.1080/01621459.1975.10480264 | MR 0365957
[3] E. G. Gladyshev: Periodically correlated random sequences. Soviet Math. 2 (1961), 385-388. Zbl 0212.21401
[4] E. G. Gladyshev: Periodically and almost periodically correlated random process with continuous time parameter. Theory Prob. Appl. 8 (1963), 173-177.
[5] M. Pagano: On periodic and multiple autoregression. Ann. Statist. 6 (1978), 1310-1317. DOI 10.1214/aos/1176344376 | MR 0523765
[6] A. Zellner: An introduction to Bayesian Inference in Econometrics. Wiley, New York, 1971. MR 0433791 | Zbl 0246.62098
Partner of
EuDML logo