Article
Keywords:
estimating parameters; testing hypotheses; Periodic autoregressive models; time-varying coefficients; Gaussian white noise; unknown mean; innovation; seasonal series; Gaussian maximum likelihood methods
Summary:
If the parameters of an autoregressive model are periodic functions we get a periodic autoregression. In the paper the case is investigated when the expectation can also be a periodic function. The innovations have either constant or periodically changing variances.
References:
[1] J. Anděl:
Statistical analysis of periodic autoregression. Apl. mat. 28 (1983), 364-365.
MR 0712913
[3] E. G. Gladyshev:
Periodically correlated random sequences. Soviet Math. 2 (1961), 385-388.
Zbl 0212.21401
[4] E. G. Gladyshev: Periodically and almost periodically correlated random process with continuous time parameter. Theory Prob. Appl. 8 (1963), 173-177.
[6] A. Zellner:
An introduction to Bayesian Inference in Econometrics. Wiley, New York, 1971.
MR 0433791 |
Zbl 0246.62098