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ON PERIODIC AUTOREGRESSION WITH UNKNOWN MEAN
JiRi ANDEL, ASUNCION RUBIO, ANTONIO INSUA

(Received May 4, 1984)

The periodic autoregression is a model for seasonal time series. It is assumed
that the autoregressive parameters are periodic functions with the period correspond-
ing to the seasonal behaviour of the given series. The mean value can also be a periodic
function. Bayes approach is used in the paper for estimating parameters and for
testing hypotheses. Two models are investigated, one with constant variances of the
innovation process and the other with periodically changing variances.

1. INTRODUCTION

Let {Y,} be an innovation process with vanishing expectation and with Var Y, =
= 0% > 0. A process {X,} is called autoregressive, if it is generated by the relation
p ' g

Xe=bXyy+-.+bX,n + Yy,

where b = (by,..., b,) is a vector of autoregressive parameters.
The process {X,} is stationary, if

2" — bz ' —...—b, %0 for |z|=1.

If we analyze a seasonal time series having a period p, it is quite natural to assume
that the elements of the autoregressive vector b are also periodic functions with
the same period p. This can be formulated more precisely as follows.

Let X4, ..., X, be given variables. Consider vectors b, = (b“, v bn)s b, =
= (b1, -+ bpy)'- Let X, for t > n be defined by the formula

(11) Xn+(j—1)p+k =.Zlbkan+(j—l)p+k—i + Yn+(j—l)p+k s
i=

where k = 1,...,pandj = 1,2, .... Denote b = (b3, ..., b,).
There are two important cases of model (1.1). If Var Y, = ¢ does not depend
on t, we have the model with constant variances. If Var Y, ;_1)p4x = af, k=1,...,
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., p, where 61, ..., o5 do not coincide, we come to the model with periodic variances.
In the latter case we denote o=(0g...,0,).

The analysis of such periodic models was started by Gladyshev [3] and [4]
Pagano [5] investigated properties of estimators of parameters in process (1.1).
A detailed statistical analysis of model (1.1) is given by And&l [1], where also the
related references concerning the problem of periodic autoregressive processes can
be found.

In the present paper we generalize model (IAI) to the case where X, have non-

. vanishing expectations. Assume that

EXn+(j—1)p+k = ék for k= ], e D

and that model (1.1) can be used for differences from the means. Then we have

Xu+(j—1)p+k - ék = Z bki(Xn+(j—I)p+k—i - ék—-i) + Yn+(j—1)p+k .
i=1

Of course, in this formula we put &_; = &, if k — i 0.
Rearranging the terms, we come to our model

n

(1-2) Xur(-vyprk = M + Zbk; wtG=Dp+k—i T Yub(G=1yp+k >

i=1

where

n
M= & — Zlbkiéli+(j—1)p+k—i .
We denote
# = (Aul’ MAREY iup)l M

In this paper we shall assume that b, u and ¢ are random vectors with a vague
prior density. This approach has been successfully used by many authors, e.g. by
Zellner [6] and by And@l [1]. An interesting argumentation for this procedure can
be found also in Box and Tiao [2]. The authors point out that under very general
conditions this Bayes approach leads to results which are asymptotically the same
as those obtained by the maximum-likelihood method. It should be emphasized,
however, that Bayes approach is substantially easier in our case than the direct
asymptotics of maximum-likelihood estimators.

For analyzing model (1.2) we use methods quite analogous to those which were
applied in [1]. The presence of new parameters y leads to certain complications
and, therefore, these new results seem to be worth publishing separately.

2. PRELIMINARIES

To keep this paper self-contained, we recall here some general assertions which
will be used in the statistical analysis of model (1.2). At the beginning we would like
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to stress that the symbol ¢ will denote a constant. It will be used in this sense through-
out all the paper. We point out explicitly that ¢ in any two formulas need not be the
same constant.

Theorem 2.1. Let A be an n x n symmetric regular matrix. Then for every
n-dimensional vectors x and q the formula

X'Ax — 2x'q = (x — A 'q) A(x — A7'q) — g'A'gq
holds.
Proof is clear. O
Theorem 2.2. Let m = 2. Then
J‘ (l + a2 + XZ)*m/Z dx = C(‘ + aZ)—(m—l)/Z ,

where ¢ does not depend on a.

Proof.
%) ) xz —m/2
(1 +a*+ x)™"?dx = (1 + a*)™™? 1+ dx .
—w . 1 +a?
After the substitution x = (1 + a*)'/? t we obtain the desired result. O

Theorem 2.3. Let Qy,...,Q, be n x n symmetric positive definite matrices.
Let Q = Q; + ... + Q,. If p = 2, then the matrix

oo 0 HQIQ"Ql, 0070, |
| i | O AR ‘
00, 0 le,00 0,00,

is positive definite.

Proof. See [1], p. 366. ' Od
Theorem 2.4. Let V be an n x n symmetric positive definite matrix and let
a random vector X = (X4, ..., X,,)’ have the density
(2.1) g(x) = (1 = x'Vx)™™2,

where m = n'+ 1. Introduce a random vector
Z=(Zy,.-Z) =(X:, - X1) s

where 1 < i, < i, <...<ig=<n,1=<s<n. Let Whbe the matrix arising from
the rows iy, ..., iand from the columns iy, ..., i;of the matrix VL. Then the margin-
al density of the vector Z is

q1(2) = c(1 + 22 W lz) mmmroiz,
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Proof. See [1], p- 367.

Theorem 2.5. Let a vector X = (X, ..., X,) have the density (2.1).

random variable

m —n

F = X'vx

has the F, distribution.

n,m—n

Proof. See [1], p- 368.

3. MODEL WITH EQUAL VARIANCES

O
Then the

We shall assume in this section that Y, are independent N(0, %) variables with
6% > 0. Our analysis will be based on random variables X,, ..., Xy, where N >
> n + p + np + 1. As noticed above, b and y are random vectors and ¢ is a random
variable. At the beginning, we introduce some notations which will be used till the

end of this paper. Let

—n—k
akzl:l_v._"__¥:|+1, k=1,...,p,
p

where [ ] denotes the integer part. Put

X :(x!—'l""’x!—n),a t=n+1,...,N,

ar
_ -1 =0 _ -1 0
X = o4 Zx/|+(j—1)p+k s X = & an+(j——l)p+ka
i=1 i=1
= 0o _ =0
Akj = Xp+(j—-1)p+k — Xk » Ak; - n+(;—l)p+k - Xk

ZAk,7 ZAU kj > ZA kj’

bk = Sk—lck’ Ry =T, — bf/skb:,

T=T,+..+T,, R=R +...+R,, S=8 +...+85,,

7 1 =0
v = M — X+ biX me =% — bi'%,

q, = G(k[l —_ othk (Sk + othkxf) 1 ] q=qy + ... + qp>

=Y, by), v=(v, ),
= (‘llp [ERPY NP)I ] /l* = (#T’ vy #:)I >
Wk§bk—b:’ Ukzl‘k_fk_*_bf'xltc):#k_“:,

b, = b;(" — oSk + awh?’) 1, for k=1,..., p-
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It is clear that S) are symmetric positive definite matrices with probability one.

Theorem 3.1. Given X{ = x4,...,X, = x,, b, u and o, the conditional density
of Xyt 15 -+, Xy is given by the formula

SConsto o g | X4y oo % by 1, 0) = (2m) VT2 7N
1 »r
wen {1 8 TR ot + (- b0 st - 1}
k=1
Proof. Our assumptions on Y, immediately yield that the conditional density is

(zn)‘(N—n)/Z g N+n exp {_ _1_ 4 i le}
IcJ 3

1 26% K= =4
where
n
Zkj = Xt -typ+e — Mk — Z biiXus-1yp+k—i -
i=1
However, since
N n
1.0
Z bkixn+(j—l)p+k‘i = bkxn+(j—1)p+k s
i=1
we have
_ 7 40
zy; = ;g — v — by
Because
ax A
— o _
Y 4y =0, 3 4% =0,
ji=1 j=1
we obtain

Z Z,%J = T;‘ - b;cck - C;‘bk + b;‘Skbk + “kvl% .

j=1
Finally, it follows from Theorem 2.1 that

le,fj = R, + ovp + (b — b;) Si(by — bf) - O

j=

It should be noticed for further purposes that v, depend on p, and b,.

Theorem 3.2. Let the prior density of b, u and ¢ be 6™ for o > 0 and zero other-
wise, independently of X1, ..., X,. Then the posterior density of b, u and o is

—Netn- 12 )
g(b, p, o I x)=co M7l exp{— 2”0_2,2,1 [Ri + wvi + (b — b)Y Su(bi — blt)]}

for 6 > 0and zero otherwise, where x = (xy, ..., xy) stands for X; = xy, ..., Xy =
= Xy -
Proof follows from the Bayes theorem. O
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Theorem 3.3. The modus of the posterior density is
b =b*, u=p*, 62:0*2=(N—n+1)'1R.

Proof. Since S, are positive definite, g(b, p, o | x) for any fixed o reaches its
maximum for b, = by and v, = 0, i.e. y, = pu. Therefore,

g(b, p, o | x) < g(b*, p*, 0| x) = co™ ¥+ exp{— 51;—2} = 90(0) -

The function go(0) is maximized when 6*> = (N — n + 1)"' R. O
The modus can be used as a point estimator of the parameters b, u and g.

Theorem 3.4, The marginal posterior densities of o, b and p are given by the
Jformulas

() g1(o [ x) = o™ NI exp {~ i}’ a>0,

202

p —(N=n-p)/2
(ii) gx(b | %) = ¢ [1 + R7Y (b = b Sibi - b:‘)] ,

~(N=n-np)/2

(iif) gs(n| x) = c[l + R“éqk(uk - u )2‘]

Proof. The simultaneous posterior density of b and ¢ is

hy(b, 0| x) = fn g(b, p, 0| x)dp =

p
= co~N*" L exp {_.. 2_1.2. Z [Rk + (bk - b:)l Sk(bk - b:)} -J
o’ k=1

where

1 2 _ Ve
J= J exp {— — % ol — X + b,,xg)z} du.
Rp 20 k=1

Using the substitutions

1 _ .
;(Hk— X + ber?) =u, k=1,..,p,

we get

p
J = JPJ exp{— 1y ocku,f} du = co?,
Rp k=1

which gives
)4
b0 3) = o exp L (5 ) S - 0]
% k=1
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Further,

0.(o]x) = j X

hy(b,o | x)db = ¢~N*mHro! exp{— iz} Ay

Rnp

where
1 2 ,
Jy =J exp {— — 2 (b = bi) Si(by — b,’f)} db .
Ry 20° k=1
We make the substitution
t, =0 ! S,I/Z(bk - b,f), k=1,...,p,
the Jacobian of which is
14 v P
e tst2 ™t = o [ [Si] ™% = co™.
k=1 k=1

Therefore,

and

g1(0' l x) — Co,—N+n+p+np—! exp {_ _&} .
20?

Further we have

ga(b|x) = thl(b, o|x)do.

0

Denote A
)4
A =kZl[Rk + (bx — by) Su(by — b)]

for this part of the proof. From the substitution
All?671 = ¢
we get
p
ga(b | x) = c[R + Y. (b, — bg) Su(by — bg)]" """ P2.

k=1
Since R does not depend on b, it can be taken away as a constant. This gives the
second assertion of the theorem.

For the last part of the proof we put

p
B =k; [Ry + owvi + (b — by) Si(by — by)] -
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Then

L —N+n—1 B
g(b.p.o|x) = co exp{_ ‘7}

20
and
hy(b, | x) = J- g(b,p, 0| x)do = ¢cB~V"2 =
0
)4 —(N-m)/2
=¢ {kZ,[Rk + o — % + BE)? + (b — b)) Su(by — b:)]}
Since

(e — X + Bix2)? + (b — bY) Si(by — b))
= oy[m — X + (b — bp) % + bE'x0]* + (b — by) Si(be — by) =
= o(v, + Wi %)) + W SW, =

1l

= Wi(S, + 0 X0%.) W + 200, WX, + oyop =
= [Wk + o Sk + akxl(c)xl?,) ! ] (Sk + al\xl(c)xl?’) [WA + akvk(sk + O‘Axl?xfl) ! ’_‘I?] +
+ “kvk - “f”ﬁik'(sk + dkxl\ ) ! _0 =

= (b — Ek)( (S + akxl(:xl(\)() (b — bn) + qvp
we have

ha(b, it | x) =
P N . »
= c[l + Ry (b, — b)) (S, + %%y ) (b — b)) + R Y, quf]
k=1 k=1

~(N=-n)/2

The integral

gs(n| x) = Ln ha(b, 1| x) db

can be calculated by using the substitution
u, = R7YHS, + ox3x0 )/ (b — b)), k=1,...,p,

the Jacobian of which is a constant. Thus

v »
gs(n|x) = Cf (1 +RYY qop + Y uu) V" du.
Rop k=1 k=1

Now, we use Theorem 2.2 p-times and this leads to the formula for g;(u | x) which

is given as the last assertion of Theorem 3.4. O
Theorem 3.5. Let
N—-—n—-np—-p¢g ,
by =BT IP TP S bEY S(by — bE),
npR K=1
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N—-n—-—np—-p
By =TI R S (e — )
PR K=1

Then the posterior distributions of A, and , are

Jy ~ F Jy ~F

np,N—n—np-p > p,N—n—np-p*

Proof. The assertion follows from Theorem 3.4 (i), (ii) and from Theorem 2.5. []

The variables 4, and A, can be used for tests of fit. If a hypothesis specifies some
special value of b or of u, we insert it in the formulas for 4, or 4,. If the result exceeds
the critical value of the corresponding F distribution, we reject the hypothesis.

Theorem 3.6. The posterior distribution of the variable R|6® is Yy _n—p—np-

Proof follows from Theorem 3.4 (iii) by direct calculation. O
This result can be used for constructing confidence intervals for ¢2.

Theorem 3.7. Denote by s® the elements of the matrix S; ‘. Then the posterior
distribution of the variable

Ti=(N—n—p—np'? (Rs(k)ii)_llz (byi — bi:)
is the Student ty_,_,,_, distribution.

Proof. The assertion follows from Theorem 3.4 (ii) and from Theorem 2.4. O

The most important question is whether our model can be reduced to the classical
autoregressive model or not. A test of such hypothesis can be based on the following
two theorems.

Theorem 3.8. Denote
H = Diag {Sy, ..., Sp=1} — (S1, -2 Sp=1) S™(S1, --+» Sp=1) »
A= (by—b)—(b,— b)), Ad=(4,...,4, ).

Then the variable

F,=NZPZMP N g4

n(p—1)R

has the posterior F, distribution.

n(p—1),N—p—np—n

Proof. First of all we notice that the matrix H is constructed from Sy, ..., S,
in the same way as in Theorem 2.3. This ensures that H is positive definite. The proof
of Theorem 3.8 is the same as that of Theorem 3.5 in [1] (only N must be replaced
by N — p), and thus we sketch it very briefly. We put 4, = b, — b: and calculate
the posterior density of 4y,...,4,_,, 4, After that we find the marginal density
of 4y,...,4,-;, which have the same form as the density g(x) in Theorem 2.4.
This enables us to apply Theorem 2.5. O
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Theorem 3.9. Let

K = Dlag {ql’ LRREY qp‘l} - q—l (qla M1 qp—l), (ql’ sy qp~l)9
& = (e — ) —(u, — py) for k=1,...p—=1, 8= (6,...,0,,).

Then the variable

has the posterior F,_{ y_,_ ,—,, distribution.

Proof is analogous to that of Theorem 3.8. O

If the hypothesis Hy: by = ... = b, is true, then 4, = by — b;. We calculate
F, with 4 = (41, ..., 4,_,) and in the case that F, exceeds the critical value of the
corresponding F distribution, we reject Hy. Similar procedure can be used for testing
Ho: 1ty = ... u,- In this case we have §, = py — g and Hy is rejected if F; exceeds
its critical value.

4. MODEL WITH PERIODIC VARTIANCES

In this model we assume that Y, are independent variables such that
Yoi(i-typtk ~ N(O, af). We shall keep the notations introduced at the beginning
of Section 3.

Theorem 4.1. Let the prior density of b, u and ¢ be o' ... a;l foroy >0,...

...,0, >0 and zero otherwise, independently of X,,...,X,. Then the posterior
density of b, pand o is

)4
g(bp, 0| x) = c[]ox™ " exp {— —27175 [Re + ovi + (b — by) Si(by — b,’f)]} )
k=1 2

Proof is analogous to that of Theorem 3.2. O

Theorem 4.2. The modus of the posterior density is

R
b=b*, p=u*, of=0,"=—%— for k=1,...,p.
o + 1
Proof is analogous to that of Theorem 3.3. O

If we use the modus as an estimator of the parameters, we can see that the estimators
for b and p are the same in the model with equal variances as in the model with
periodic variances. We get different estimators only for o7.

Theorem 4.3. The marginal posterior densities of o, b and p are:

(i) gi(o|x)=c¢ rp[ak_""” exp {— %} ,
k=1

O
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14
(ii) gx(b|x) = c[I[1 + Ry '(by = by) Su(by — bg)] ™" V/2,
k=1

r
(iii) g3(i ] x) = e TT[1 + @R e — )]
k=1

Proof is similar to that of Theorem 3.4 and thus we introduce only its main
points. First of all we calculate

hy(b, o|x) = J‘ g(b, u, 0| x)du =

Ry
F —aK 1 *\/ *
=c[lor™exp{— — [Re + (be — by) Su(bi — bi)]} -
K=1 20y

From here we easily get the marginal densities g,(c | x) and g,(b | x). Further we
derive

hy(b, p| x) = J; “.J'o g(b, p, 0| x)do =
P
= l—[ [Rk + (bk — b;\k)/ Sk(bk -_ b:) + ak(ﬂk - )—Ck + b;gf{))Z]*‘dk/Z =
k=1
P N .
=c[][Re + (bx — b,) (Sk + wX0%)") (b — b)) + quoi] ™.
k=1

The formula for g;(u | x) follows from

gs(p|x) = J-R hy(b, | x)db . O
Theorem 4.4, Let -

o —1—n ,
Fy=—"— (b= by S (b — b5), k=1,....p.
nR,
Then the posterior distribution of F is F, ,, _,_, and, given x, the variables F, ...
..., F, are independent.

Proof. From Theorem 4.3 (ii) it is clear that by, ..., b, are conditionally indepen-
dent and that the density of b, is

g2,k(bk I x) = C[l + Rk—l(bk - b:)' Sk(bk - bf)]'(ar]w .

We apply Theorem 2.5, which gives the assertion about the F, , _, _, distribution. []

Each variable F, can be used for a test of fit that the k th vector of the autoregressive
parameters is b,. If F, > F,, _;_,(«), we reject this hypothesis on the level o.
A simultaneous test of fit for the whole vector b can be based on the following result.
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Theorem 4.5. Let H, be the distribution function of the F,, _,_, distribution.
Put m, = 1 — H\(F,). Then the posterior distribution of

14
e=—-2)Inm
_ K=1
is %3,
Proof. It is well known that H,(F,) has the rectangular distribution R(O, 1).
Then 7, has the same rectangular distribution and —2 In 7, has the 2 distribution.
Since 7, are independent, given x, ¢ has the xgp distribution. O

We have the following application of Theorem 4.5. If ¢ 2 x3,(x), we reject the
hypothesis that the vector of all autoregressive parameters is b.

Theorem 4.6. Let

To=[(n—n—1)q/R]"?(m—w), k=1,...p.

Then the posterior distribution of T, is the Student t, __,_ distribution and, given
x, Ty, ..., T, are independent.

Proof. The marginal distribution of g, can be calculated either by Theorem 2.2
or by Theorem 2.4. From here we derive the density of T;, which coincides with
the density of the t, _,_ distribution. O

The result given in Theorem 4.6 can be used for constructing a test of fit about
the true value of p,. If |T,| = 1, _,—(x), we reject the hypothesis that p, is the true
value. The simultaneous test of fit can be constructed as follows. If N — oo, then
also o, — oo for all k. Since T, has asymptotically the N(O, 1) distribution, T7 has
asymptotically the x? distribution, and from the conditional independence we get that

T=T{+..+T;

has asymptotically the . distribution. If T > y2(a), we reject the hypothesis that
Uy, ---, i, are true values of the model. This procedure enables us to decide whether
the vector p is the zero vector or not, because under the hypothesis iy = ... = u, = 0,
the variable

r=$ - 0 - R0

has asymptotically the Xi distribution.
Also the procedure described in Theorem 4.5 can be simplified if we use asymptotic
results. If an n-dimensional random vector X has the density

g(x) = (1 + x'Vx)™™2,
where Vis a positive definite matrix and m = n + 1, then Y = m!/2X has the density

511(,\7) = c(l + y'Vy/m)—m/Z )
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If m — oo, then
q:(y) = cexp {=3y'Vy},

i.e. Yhas asymptotically the N(0, V') distribution. If m is sufficiently large, we can
approximate the distribution of X by N(0, m~'¥~"). In particular, we have approxim-
ately

mX'VX ~ y2.

If we apply these considerations to the density g,(b ] x) given in Theorem 4.3 (ii),
we get that
d 1.
e* :kzl[(“k = D[R] (b = ;) Slbi = bi) ~ 2ap

approximately holds. Thus we can use a testing procedure which is based on o*
instead of that based on ¢ in Theorem 4.5.
Let us approximate the density g,(b | x) from Theorem 4.3 (ii) by

g3(b ] %) = coxp {—3 3 (o = DR (b = B1Y Su(by = b))
If we define
Ay = (b, — by) — (b, = by) for k=1,...,p—1,
A= (4, ..,4,,), U=R (4 —1)S,, U=U;+...+U
L= Diag(Uy,...,U,_;) —
— Uy, ., Up)) U (Uy, .., Upy),

p

D

then
r, = A'LA

has approximately the x5 ,- 1, distribution. The derivation of this result from g3(b | x)
is analogous to the proof of Theorem 3.8. Similarly, the density gi( l x) from
Theorem 4.3 (iii) can be approximated by

gi(1]x) = cexp {_'%kgluk(uk - m)*,

where
u, =R (o —n)gq,, k=1,...,p.
If we put
O =(m — ) — (up—pp) for k=1,...,p—1,
§=1(81,...,0p_), u=u + ... +u,,
M = Diag {us, .o, upq} — u g, ooyu,_y) (uy, ...,u‘,_l)' ,
then

r, = 0'Mé

has approximately the y;_; distribution.
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Using r,and r, wecan test the hypotheses Hy: by =...=b, and Hy: ;= ... = Ups
respectively. If H, holds, then 4, = b: — b and when r,

szr(p—l (‘1), we reject H,.
Similarly, if H{ holds, then &, = u; — p; and when r,

>
> y2_ (o), we reject Hy.
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Souhrn

O PERIODICKE AUTOREGRESI S NEZNAMOU STREDNi HODNOTOU

JIRf ANDEL, ASUNCION RUBIO, ANTONIO INSUA

Periodickd autoregrese je model pro sezénni Casové fady. Predpoklddd se, ze
autoregresni parametry jsou periodické funkce s periodou, kterd odpovidd sezénnimu
charakteru fady. Stfedni hodnota fady muZe byt rovnéZ periodickd funkce. V prdci
je pro odhad parametrii a pro testovdni hypotéz pouZit bayesovsky pfistup. Jsou
vySetfovdny dva modely. Jeden se tykd pfipadu, kdy inovacni proces md konstantni
rozptyl, druhy model odpovidd inovaénimu procesu s periodicky se ménicimi
rozptyly.
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