Previous |  Up |  Next

Article

Keywords:
monotonicity of the Temple quotients; computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space; length of the interval for admissible shifts for the Temple quotients
Summary:
A new proof of the monotonicity of the Temple quotients for the computation of the dominant eigenvalue of a bounded linear normal operator in a Hilbert space is given. Another goal of the paper is a precise analysis of the length of the interval for admissible shifts for the Temple quotients.
References:
[1] F. Goerisch J. Albrecht: Die Monotonie der Templeschen Quotienten. ZAMM 64, T278 -T279 (1984). MR 0754507
[2] K. Rektorys: A proof of monotony of the Temple quotients on eigenvalue problems. Apl. mat. 29 (1984), 149-158. MR 0738500
[3] F. Riesz B. Nagy Szekefalvi: Leçons d'analyse fonctionelle. Academie des sciences de Hongarie, Budapest 1953 (Russian). Izdat. Inost. Lit., Moscow 1964.
[4] A. E. Taylor: Introduction to Functional Analysis. J. Wiley, New York 1958. MR 0098966 | Zbl 0081.10202
Partner of
EuDML logo