Previous |  Up |  Next

Article

Keywords:
quasilinear hyperbolic system; precise formula; critical time; shock wave; transformation; Riemann invariants; isentropic non-viscous compressible fluid flow
Summary:
In this paper the exact formula for the critical time of generating discontinuity (shock wave) in a solution of a $2\times2$ quasilinear hyperbolic system is derived. The applicability of the formula in the engineering praxis is shown on one-dimensional equations of isentropic non-viscous compressible fluid flow.
References:
[1] P. D. Lax: Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Physics, Vol. 5 (1964), No. 5, 611 - 613. DOI 10.1063/1.1704154 | MR 0165243 | Zbl 0135.15101
[2] A. Jeffrey: Quasilinear Hyperbolic Systems and Waves. Pitman Publishing 1976. MR 0417585 | Zbl 0322.35060
[3] F. John: Formation of singularities in one-dimensional nonlinear wave propagation. Comm. Pure Appl. Math., XXVII (1974), 377-405. DOI 10.1002/cpa.3160270307 | MR 0369934 | Zbl 0302.35064
[4] A. D. Myškis A. M. Filimonov: Continuous solutions of quasi-linear hyperbolic systems with two independent variables. (Russian). Differenciaľnyje uravnenija XVII (1981), 488 - 500.
[5] I. Straškraba V. Jezdinský: Critical times of generating shocks on smooth one-dimensional pressure wakes in inviscid fluids. Acta Technica 28 (1983), No. 5, 629-642. MR 0727520
Partner of
EuDML logo