[1] J. H. Bramble A. H. Schatz:
Least squares methods for 2m th order elliptic boundary-value problems. Math. Сотр. 25 (1971), 1-32.
MR 0295591
[2] P. G. Ciarlet:
The finite element method for elliptic problems. North-Hiolland Publishing Company, Amsterdam, New York, Oxford, 1978.
MR 0520174 |
Zbl 0383.65058
[3] M. Crouzeix A. Y. Le Roux: Ecoulement d'une fluide irrotationnel. Journées Elements Finis. Université de Rennes, Rennes, 1976.
[4] P. Doktor:
On the density of smooth functions in certain subspaces of Sobolev spaces. Comment. Math. Univ. Carolin. 14, 4 (1973), 609-622.
MR 0336317
[5] G. J. Fix M. D. Gunzburher R. A. Nicolaides:
On mixed finite element methods for first order elliptic systems. Numer. Math. 37 (1981), 29-48.
DOI 10.1007/BF01396185 |
MR 0615890
[6] V. Girault P. A. Raviart:
Finite element approximation of the Navier-Stokes equation. Springer-Verlag, Berlin, Heidelberg, New York, 1979.
MR 0548867
[7] P. Grisvard:
Behaviour of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. Numerical Solution of Partial Differential Equations III, Academic Press, New York, 1976, 207-274.
MR 0466912
[8] J. Haslinger P. Neittaanmäki:
On different finite element methods for approximating the gradient of the solution to the Helmholtz equation. Comput. Methods Appl. Mech. Engrg. 42 (1984), 131-148.
DOI 10.1016/0045-7825(84)90022-7 |
MR 0737949
[10] M. Křížek P. Neittaanmäki:
On the validity of Friedrich's inequalities. Math. Scand. (to appear).
MR 0753060
[12] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
MR 0227584
[13] J. Nečas I. Hlaváček:
Mathematical theory of elastic and elasto-plastic bodies: an introduction. Elsevier Scientific Publishing Company, Amsterdam, Oxford. New York, 1981.
MR 0600655
[15] P. Neittaanmäki J. Saranen:
Finite element approximation of vector fields given by curl and divergence. Math. Meth. Appl. Sci. 3 (1981), 328-335.
DOI 10.1002/mma.1670030124 |
MR 0657301
[16] P. Neittaanmäki J. Saranen:
A modified least squares FE-method for ideal fluid flow problems. J. Comput. Appl. Math. 8 (1982), 165-169.
DOI 10.1016/0771-050X(82)90038-9
[17] J. Saranen:
Über die Approximation der Lösungen der Maxwellschen Randwertaufgabe mil der Methode der finiten Elemente. Applicable Anal. 10 (1980), 15 - 30.
MR 0572804
[19] I. N. Sneddon:
Mixed boundary value problems in potential theory. North-Holland Publishing Company, Amsterdam, 1966.
MR 0216018 |
Zbl 0139.28801
[20] J. M. Thomas: Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes. Thesis, Université Paris VI, 1977.
[21] W. L. Wendland E. Stephan G. C. Hsiao:
On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Meth. Appl. Sci. 1 (1979), 265-321.
DOI 10.1002/mma.1670010302 |
MR 0548943