[2] A. R. Curtis:
An eight order Runge-Kutta process with eleven function evaluations per step. Numer. Math. 16, 268-277 (1970).
DOI 10.1007/BF02219778 |
MR 0270556
[5] A. Friedli:
Verallgemeinertes Runge-Kutta-Verfahren zur Lösung steifer Differentialgleichungssysteme. Lect. Notes Math. 631, 35 - 50 (1978).
DOI 10.1007/BFb0067462 |
MR 0494950
[6] P. J. van der Houwen: Construction of integration formulas for initial value problems. Amsterdam: North Holland Publishing Company 1976.
[7] A. Huťa: The algorithm for computation of the n-th order formula for numerical solution of initial value problem of differential equations. 5th Symposium on Algorithms, 53 - 61, (І979).
[9] K. Nickel, P. Rieder:
Ein neues Runge-Kutta ähnliches Verfahren. In: ISNM 9, Numerische Mathematik, Differentialgleichungen, Approximationstheorie, 83 - 96, Basel: Birkhäuser 1968.
MR 0266436 |
Zbl 0174.47304
[10] E. J. Nyström: Über die numerische Integration von Differentialgleichungen. Acta Soc. Sci. Fennicae, Tom 50, nr. 13, 1-55 (1925).
[11] A. Prothero, A. Robinson:
On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Соmр. 28, 145-162 (1974).
MR 0331793 |
Zbl 0309.65034
[12] K. Strehmel: Konstruktion von adaptiven Runge-Kutta-Methoden. ZAMM, to appear 1980.
[13] J. G. Verwer:
S-stability properties for generalized Runge-Kutta methods. Numer. Math. 27,359-370(1977).
MR 0438722 |
Zbl 0336.65036
[14] J. G. Verwer:
Internal S-stability for generalized Runge-Kutta methods. Report NW 21, Mathematisch Centrum, Amsterdam (1975).
Zbl 0319.65044