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AND GENERALIZED RUNGE-KUTTA FORMULAS
OF ARBITRARY ORDER WITH RATIONAL PARAMETERS

ANTON HuTA and KARL STREHMEL

(Received October 23, 1980)

1. INTRODUCTION

For the numerical solution of initial value problems for ordinary differential
equations of the first order

(1.1) V(x) =f(x, 9(x)), ¥(x0) = yoeR", xe€[xq, xy]

with f:[xg, xy] x R*— R, methods of discretization are the only ones applied
at present. We assume that f is Lipschitz continuous in the strip S := {(x, y)| xo <
SX =Xy, yE R”}, which is known to guarantee a unique solution of (1.1). Essential
in choosing a numerical method is its order of consistency and its numerical stability
which has been treated by numerous authors since the fundamental work of Dahl-
quist [3] appeared.

In the present article we shall first of all give a general principle for the construc-
tion of explicit Runge-Kutta formulas of n-th order (RK-methods), where the
solution of the generally nonlinear conditional cquations for the parameters is exact
and rational. Up to now, the problem of the construction of RK-methods has been
solved only for n < 10. However, for greater n (see Curtis [2]) some formulas
only hold approximately, i.e. the residues of the conditional equations are different
from zero. The reason for this lies in the nonlinearity of the system of conditional
equations, which increases strongly with the increasing order.

Since the explicit RK-methods are known to have a closed domain of stability
they are not suitable for “stiff” systems. These systems can be characterized by the
presence of transient components which, although negligible relative to the other
components of the solution, constrain the step size of an explicit RK-method to be
of the order of the smallest time constant of the problem. Therefore for this class
of problems we shall derive, by using an explicit RK-method, a generalized RK-
method with an adaptive stability function (ARK-method). For this purpose we need
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the Jacobian matrix of the system (1.1) or its approximation and in addition the
exponential matrix or its approximation.

In order to avoid a too complicated notation we restrict our presentation to scalar
differential equations of the form (I1.1). ie. to the case v = 1. The generalization
to v > 1 is mostly apparent, otherwise we shall give special references. As additional
contributions to generalized RK-methods we mention the articles of Lawson {8],
Ehle and Lawson [4]. van der Houwen [6], Friedli [5] and Verwer [13], [14].

2. CONSTRUCTION OF n-th ORDER RK-FORMULAS

An s-stage RK-method is defined by the well-known expression

s—1
(2]) Upypp = Uy + Z P k'(xlll’ Uy,) l)
1=0

Uy = vy, m=20,1,...,
where

ko(x,¥) = h.f(x, ).
q q

ky(x,y)y = h.f(x + ah.y + Y bk;—y), a, =Y by, g=12,...5s—L
ji=1 =1

The local discretization error 7,(x,,) has the form

(2.2) Twﬁ=;hmﬁqu@@_§ﬂw&mﬂﬁm4

-

For y(x, + h) — y(x,,) the asymptotical expansion

2 3
(2.3) y(x, + h) = o(x,)=h.f+ 1—2’7 Df + %(sz + f1Df) +
4 5
+ (D + £uDf 4 SEDF + 3DFDF) + L [DYf + [+ fiDY +

+ fiDf + 4D*fDf, + 6DfD*f, + 7/, Df\Df + 3f,(Df)*] + ..., (h - 0)
holds with

D=y (’J) N D= (’j) Sl fyi= L = ot

A )
j=0 OxP dy*

where one has to take every derivative at the point x,,, y(x,,,).

Remark 1. The general term of the right-hand side of (2.3) has the form

WY .
— T (") 5 D'fy = D'f.
J:t=0

') u,, denotes the approximation to y(x,,) for x,, = xo -+ m . h.
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If the product is assigned the natural number

Z (t + m

— the so-called “dimension” — then the expression with the factor h'[j! in (2.3)
has the dimension j — 1. This is advantageous in checking the Taylor expansion.
Now we introduce the following quantities:

i, y=a; =5 b,,
v=1

e(i, 2) = (i, 2[my) =Y (v = 1,1) by s

V=2
i
(i, 3) = (i, 3[mg[my, r) =Y ™(v — 1, 1) ™ (v — 1,2]r) by s
v=3
(i, 4) 1= c(i, 4/mg/my, ny/my, ny, 0y, r) =

=Y ™ =1, 1) (v = 1,2/n) ¢™(v = 1,3]ny/ny, 1)
v=4

etc. by means of which we can write some conditional equations of an s-stage RK-
method of n — th order in the form

(24) [f] :i:]op; =1,
(25) (D] 53 picf(i 1) = —— for q= 1,2 .0n—1,
i=1 q+1

o . y (i 2] 1
(2.6) [Dfo] Lp (5. 1) elis 20a) = (q+1)((]+1+7)

for g =1,2,...,n—2,
F=0,1,...,n—=3 with g+r=n-2,

(2.7) [(Df) D'f,) :Silp,-c'(i, 1) (i, 2/1) = L for r= 0,1,....,n =75,

4(r + 5)
2.8 LD 's_lwci ] ) for r = n—
(2:8) LD X pelis 3J0)1, 1) = (+3)m f 1,2,...n =3,
1
(2.9) [fiD'f]: ch( 4/0/o/1, 0,1,1)——( +4)[4] for r=1,2,...,n—4,

(2.10) (o] Y pic(i, ”)’ -

i=n-—1

) (r -+ 1)[1] (/ -+ D (r-- 1 — 1. (" = 1).
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The expressions in the brackets indicate the terms which yield by comparing
the coefficients the corresponding condition of equations. The quantities c(i; v),
v=1,2,..., are called the quantities of v-th order. The equations (2.4‘) through
(2.10) show that the upper summation bound — the so-called “height” — is always
s — 1; whereas the lower summation bound — the so-called “depth™, which we shall
denote by g — assumes the values g = 0,1,...,n — 1.

Now we assign:

1. each weight coefficient p; the weight ¢ = 0,

2. each parameter b;; and (i, 1) the weight ¢ = 1,

3. each parameter c(i, 2[m,) the weight ¢ = m, + 1.
Then we can determine recursively the weights of the parameters c(i, 1), I =3,..,.
Hence it follows e.g. that the weight of ¢(i, 3/my[/m,, 7o) is 0 = mg + m(ry + 1) + 1
and for c(i, 4/mo/my, ny[m,, n,, ny,r) one gets o = my + my(n, + 1) + m, .
.[ny + ny(r + 1) + 1].  If we denote the number of the conditional equations of
the depth g and of the weight ¢ by x(n, g, 0), furthermore the number of the equations
of the weight g by Y’(n, g) and the number of the conditional equations of a certain
s-stage RK-method of the order of consistency n by ¢(n) then the following relations
hold:

gz(n, g.0) = ¥(n,g) and Y ¥(n,g) = o(n).

The number x(s) of the parameters of an s-stage RK-method is

«(s) = (S;_“ ‘).

In practice for scalar differential equation one chooses s so that the inequality
“(s) z ¢(n)
holds otherwise the system of conditional equations need not have a solution. Tables

1 and 2 show the number of conditional equations classified in order, depth and
dimension and the dependence of s on n as well.

The degree of freedom o(n) of a certain s-stage RK-method is given by the relation

o(n) = x(s) — ¢(n).
In order to obtain a rational solution of the system of conditional equations it is

required to linearize the system by means of suitable transformations. The first
transformation has the general form

(2.11) (i, 1jy[jas my[jss my, my, my) =
s—1

c= Y pue(i 1) P u, 2[my) P u, 3my[my, my) by iy
1

p=i+
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Table 1: The number of the conditional equations and the dependence of s on n for v = 1.

e

n g 0 1 2 3 4 5 ¥Y(n, g) @(n) K

1 0 1 1 1 1

2 0 1 1 2 2
1 1 1
0 1 1

3 1 1 1 4 3
2 1
0 1 1

4 1 1 1 1 3 8 4
2 1 2 3
3 1 1
0 1 1
1 1 1 1 1 4

5 2 1 2 4 7 16 6
3 1 2 3
4 1 1
0 1 i
1 1 1 1 1 5

6 2 1 2 4 6 13 31 8
3 1 2 5 8
4 1 2 3
5 1 1

and the second transformation is given by
(2'1:) t(” 2/j1/j23 ”71!_/‘3, D, 19 "12//j’ 19 l) =
. 5_2 . . .
oo, 1) 2, 2fmy) ¢, 3] pft, my) t(is 1[4 1) by iy
p=itl1

For the third and fourth transformation we give only the two special cases

(2.13) (i, 3jm][1]}) -——”:iiilc"'(u, ) 10, 2J1}) byre
and
(2.14) (i, 4Jp)m]1 J) :z o 1) 1 3mf]1) by
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Table

2: The number of the conditional equations and the dependence of s on n for ¢ > L.

n g 0 ¥(n, g) o(n) s
1 0 1 1 1 1
2 0 1 1 2 2
1 1
0 1 1
3 1 1 2 4 3
2 1 1
0 1 1
4 1 1 1 3 8 4
2 1 2 3
3 1 1
0 1 1
1 1 1 1 4
5 2 1 2 4 7 17 6
3 1 3 4
4 1 1
0 1 1
1 1 1 1 1 5
6 2 1 2 4 6 13 37 9
3 1 3 8 12
4 1 4 5
5 1 1
Table 3: g(n) for v = 1. Table 4: a(n) for v > 1.
n i 2 3 S 6 n 1 2 3 4 5 6
o(n) 0 2 5 5 a(n) 0 1 2 2 4 8

In the equations (2.11) to (2.14) the transformed variables occur in the form (i, g/ ...
[.../...) so that we can write the equations of the transformation schematically

.../I....‘

in the form

bu,i+ 1

where i indicates the index of the transformed variable ¢, g the order of the transfor-

264



mation and the sign//separates the untransformed part from the transformed one.
Now we apply the transformation (2.11) to the system of nonlinear conditional
equations of an s-stage consistent RK-method of order n. To the system transformed
in this way we apply the transformation (2.12) etc.. In all the transformations the
heights and the depths are diminished by one so that their difference remain constant.
This implies that only equations with the depth of at least two are transformable.
For the equations (2.6) to (2.9) we obtain by means of the transformation (2.11) the

relations

s=2 1
215 Y (i) (i )= for g=1,2.n—2;
( = () G0 A/, (g+1)(qg+r+2) 1

r=0,1,..,n—3 with ¢g+r=<n-2,

s—2 1

2.16} c(i, 1) (i. 1/r/1,1) = ——— for r=0,1,....,n — 3.
O N e
S . 1
(2.17) ;;z (i, 2fr) 1(i, 1/0) = (r+ 3)[3j =1,2,...n =3,
=2 . 1
2.18 (i, 3/0/1, ¥) t(i, 1]0) = ——" f =1,2,...,n — 4,
(2.18) i:ZB((l [0/1, r) (i, 1/0) (- + 4 or 7 ; no— 4

By using the second transformation we hence obtain the equations

s—3 o ) 1
(2‘]9) i:Z] ¢ (l, ]) ’(I, 2/0//0) = ’(”’.7+‘3)[3] for r = J, 2, an =3,
s—3
(2.20) > (i, 2[r) 1(i, 2/0/]0) = ( -12—)—[-4—] for r=1,2,...,n—4
i=2 o+

and then the third transformation yields

s—4
i 1) (0, 300000,0) = — ' for r=1,2 .0 -4,

2.1 _ 1
@22, (r + 4

1

i

It is seen that the order of the quantities ¢(i; v) decreases by every transformation,
" for instance in the equations (2.9) (2.18), (2.20) and (2.21) we obtain successively
the quantities ¢(i, 4), ¢(i, 3). ¢(i, 2) and (1, 1).

The algorithm for the determination of the rational parameters of an explicit
RK-method consists of the following steps:

1. To a prescribed consistency order n for the numerical solution of a scalar
differential equation one determines the stage number s of the RK-method as the
least natural number for which the condition x(s) = ¢(n) holds.

2. After choosing some weight coefficients p;, = Ofori =1,2,..., ¢, (the chosen
number ¢ depends on the consistency order n) and by a suitable definition of the step
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parameters a; for i = ¢ + 1, & 4+ 2,..., s — 1, we obtain, according to (2.5), a linear
system of equations with a Vandermonde matrix for the weight coefficients p;, i = & +
+ 1,...,5s — 1. The parameters p; and the step parameters a; must be adequate
to the number of the equations. Then the weight coefficient p, follows from (2.4).
For the transformations to be executed it is advantageous to choose the value of the
parameter a = 1.

s—1
3. We introduce the substitutions

m+ 1
— aj

m + 1

(2.22) e(i, 2/’)11) = for i=¢+1, E4+2,..,s—1,

) ) 1 5 .
c(i, 3/0/1, m) = ———— —at? for i=¢4+1, E42,..,5—1
(0. 3] / ) (m + 1)(m + 2) ¢ ¢ '

and in general

1
c(i,vfefo). 1, .. m) = gt
(5 [0f0]...| ) (m+v -1
Remark 2. The cases i = ¢ + 1 and i = ¢ + 2 in (2.22) were already used by
Nystrom [10].

4. We solve the system of linear equations for the transformed variables (i, /...
.J[...]...). The coefficients of this system are the quantities ¢'(i, 1) for r = 1,2, ...
...on = 3and (i, v/0/0]...[1, ... m)

5. We solve the system of linear equations for the transformed variables (i, 2/ ...
) (i3]0 ). . ) ete. The number of the transformations depends on the
order of consistency of the RK-method.

Remark 3. a) We denote by 5(n) the number of equations derived from the above
presented system of conditional equations, from the definitions of the variables
¢(i, I) and from the transformed equations. Tables 5 and 6 show the values of #{n)
and ¢(n) for some n.

Table 5: ¢(n) and n(n) for v = 1 Table 6: ¢(n) and n(n) for v > 1.
n 1 2 3 4 5 6 n 1 2 3 4 5 6
o(n) 1 2 4 8 16 31 o(n) 1 2 4 8 17 37
n(n)y I 3 11 26 87 253 n(n) 1 3 11 26 90 273

Since under the number r(n) of equations a great number of dependent equations
occurs, for the determination of the parameters of a s-stage RK-method not all
equations are necessary.
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b) Two RK-methods with (s, n) = (8, 6) constructed by means of this algorithm
have, in the notation of Butcher [1], the following form:

0
1 1
9 9
1 1 3
© 24 24
2 1 3 4
6 6 T 6 6
3 5 7 24 6
6 8 8 8 8
4 221 981 867 102 1
6 9 - 9 9 9 9
5 183 678 472 66 80 3
6 T a8 a8 T Tas T 48 48 48
1 716 _ 2079 1002 834 454 _ 2 72
82 82 82 82 82 82 82
1 ! 41 0 216 27 272 27 216 41
840 840 840 840 840 840 840
0
1 1
10 10
1 1 2
5 -3 5
1 1 4 t
5 30 30 30
2 4 8 2 12
5 15 ~ 15 15 15
3 3 4 1 4 4
5 10 10 10 10 10
4 8 16 4 2 8 10
5 T 15 15 15 ~1s T 15 15
1 169 260 65 60 300 __ 180 90
114 114 114 114 114 114 ii4
19 75 50 50 75 19
1 388 0 0 288 288 288 288 288

With regard to the construction of these methods see Huta [7].

3. CONSTRUCTION OF ARK-FORMULAS

For the derivation of an s-stage ARK-method we take as a basis an s-stage consis-
tent RK-method (2.1), which we write in the following recursive form:

N 0y . _
(31) 'Xm+l - '\m El “m+l L ”m ’
q
9 L . @y . _ (U= =Y . — .
Nt 1 2= Xy + aqh N L] + h z bqjj(‘\m+1 s Uiy Iz q = 15 25 cee S
j=1
- N ) A e (8 H - -
Nt += Ny s Uy 2= Uy with dgi= 1 H b.\'j T pj—l .

In principle these RK-methods arc based on the formal solution of the equivalent
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Voltera integral equation to (1.1)
(32) ¥(x) = ¥(x) + f £t (1)) e

where in each discretization interval [x,, x ], m =0,1,..., ¢ = 1,2, ...,s — 1,
the function f(x, y) ia approximated by a polynomial

2q
flfq)(x) :l_ZO{xg‘.lvzl . (X - xm,y .

The coefficients «{%, depend on the function values f;:= f(x\, |, ull ), i =

=0,1,...,q — L. The approximation values u{?,; of the s-stage RK-method (3.1)
can be written in the form

h.a)
W@ =, +h. q Z ), (—:l

First of all, for the construction of ARK-methods the given differential equation
(1.1) is linearized in each discretization interval [x,,, x,,, ;] formally in the form

(3.3) Vo= A4, + g(x, ),

where A, is a real constant (for a system, i.e. v > 1, A4, is a constant (v X v) matrix).
The residue function g(x, y) in (3.3) is defined by

g(x, ¥) = f(x,y) = A,y .

With the initial value y(x,,) = y,, we obtain from (3.3)

(3.4) y(x) = exp (A,,,(.\‘ - x,,,):) i:_v,,, -i-J. exp (——A,,,(t - .\',,,)) g(t, 1(1)) dt:l.

Xm

X

Analogously to the RK-method we approximate the function g(x, y) in [x,, x{% ]
by a polynomial

(3.5) 9O(x) = z b (x = x)

For the determination of the coefficients @{%), the same nodes are used in [x,, x2) ]
as for the coefficients aY’,?, of the corresponding s-stage RK-method, so that

%(q) NO) (0) (0) D L (g—1)
CZ, m = % y;l(g(V1n+ 1> U+ 1) * g(xm+1 s Uyt ) .

Using (3.5) we obtain the approximate solution uf/}, for y(x\% ) from (3.4) in the
form

Qq
(3.6)  ul, = ey(A,ah)u, + lzaqlzoe,H(Amaqh) ahah), qa=1,2,..s,
where the function e,(z), z € C, is defined by
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eo(z) :=exp (z),

—ei’f—)ﬁ———_ ! for z#0 S -
ne ; for z=0 :i;) (—174—;1_)' ,
Leifz) = | for z#0
an(@i= 1 ity 2

(see Nickel/Rieder [9]). For the order of consistency of an ARK-method the follow-
ing theorem holds:

Theorem 1. Let f(x, y)e C"(U); U := {(x,¥) Xo £ x < xy, [y — y(x)] £ 6,6 > 0}
and

X+ h
J [g(t, ¥(t)) — gi2(1)] dt = O(h"* "), h—0;

Xm

then the s-stage ARK-method has the consistency order n.

Proof. For the local discretization error t,(x,,) we obtain from (3.4) and (3.6)

Xt h . 0s
Th(xm) = % [:J eO(Am(Xm + h - t)) g(t’ ‘(t)) dt - h IZO el+l(Amh) ‘ﬁz;fl)nhl] .

Xm

With regard to (3.5) it follows that

1

61wl = [ s+ b= ) Tt s) - o014

By inserting the expression
eo(Ap(xpy +h — 1) =1+ 4, . (x, +h—1)+ ..
into the integral (3.7) the first term yields

(3.8) ! f " Lo(t, »(1) = gi(1)] dt,

h

Xm

which, according to the assumption, is of the order n. Then the further terms of the
integral (3.7) yield contributions which are of higher order in h than in (3.8). [J

Remark 4. An RK-methed (2.1) has the order of consistency n if

(3.9) % j T () = £O0] de = o), B — 0.

Xm
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The conditions of consistency for the approximation functions f;”(x) and 9:”(x)
are proved to be of the same kind.

3.1. An example of an ARK-methed

In the following section, to the 3/8 rule which is characterized by the parameter

scheme

0o |

11

3 ’ 3

3o -

1 1 -1 1
T N !

a suitable ARK-method of the same order (n = 4) is constructed. In an analogous
manner to each s-stage RK-method we can derive an s-stage ARK-method.

In virtue of
LD(x) = agl,

the identity
(1)

",(nlil = Uy, + 1";/1(10,711 = Uy + §lhf0
directly implies
(3.10) oD = 1, .

Taking into account

2
HP() = Y aii(x = x,)'
=0

Up i1

Xm+ 3h
@ =, +f JO() ds = uy + h(=1fo + 1)

Xm

and the requirements on
1
fle)(xm) = fO > fh(Z)(an-zl) = fl >

we obtain that the coefficients «f’) satisfy the linear system of equations

(2) —
(3.]]) o0 = fo
(2) 2) 172 .(2) _
o(O,m + %ha(l.m + §h aZ.I)H - fl s
24(2) 25,(2) 8 p2.(2) _ 1
an,m + §ha1 m + 8711 0(2,111 - _ij + fl .

In virtue of

3
HP() = Y ali(x = x,)'
1=0

Xm +h
ul =u, +f f3x)dx = u,, + h(fo = f1 + 13)

Xm



and because of the requirements on
(3 . 3 1
jf: )(Xm)=fo, "I )( r(n-()-l _fla
2
) = Zy”’f with 39" =1, 5 eR
1=0

we obtain the coefficients a, ) from the system of linear equations

(3.12)  af®) =fo,
ozé"”,, ‘ham lhzac(:” »‘— 113423,),, = f,,
L+ L+ I, + B = 9y 0, 49,
af) + thol®) + 12, 4+ 1%, = fo —fi + /2.

Finally, taking into account

HPx) = Z 4o(x = x,)'

X+ h
Up sy = Uy +J fff“)(x) dx = u,, + é(fo +3f, + 3, + 1)

Xm

and the requirements on
. ( 4 2
I =tos APCRI) =105 KPR =1,
3
IPGmts) = 20 f with Zvi‘” =1, 7¥eR
1=0 1=0

we obtain the coefficients a{*) from the system of linear equations

I.m
(3.13) af’), =f,,
afh + Lhal®) 4+ Sh2a8h + Soh3alh, + htalh, = £,

afh + Fhal®) + h 2o+ 2Jz 3l + 16h it =1,

3
bt + holt, + WPl + ol + bl =Y i,
1=0
o+ hal®) + PP, + AP, + Al = gfo + 31+ g + oSy
Now by replacing the function values f;, i = 0,1, ..., 3, by suitable function values
g; = g(x 1, ull,,) one obtains the coefficients o‘c}",},, q =1,2,3,4, from (3.10),

(3.11), (3.12) and (3.13). With these coefficients &{%, we can determme the values
@ | according to (3.6). Analogously to the 3/8 rule we can write the ARK-methods

um+
in the form

q
ufv?-)i» 1= eO(athm) Uy, + h Z qu(athm) gj—l H q = ]’ 23 35 4 >
j=1
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which can be characterized by the parameter scheme

(3.14)
o |
I By, (30 . A,)
3 ’ th(§h Am) Bzz(%h A)
1 B (h.A,,,) By,(h. A4 333(/1 Am)
to B“(h a) 347(11 B“(h 4) 344(/,

The parameters qu(aqh . A,,) are given by
By (4h. A4,) = te,(3h . A4,),
B,(3h. A,) = 3e,(3h . A,) + 3e;(3h . A,) — 4es(3h. A4,),
B,,(3h. A4,) = —3e)(3h. A,) + des(3h. A,),
Byi(h.A,) =ei(h.A,)+ 13 = 155") ex(h . A4,) + 16395 — 45) es(h . 4,,) +
+27(1 — 98) eu(h . 4,,),
By,(h.A4,) = -2+ Py ey(h. A4,) + (27 + 3 }13)) es(h. 4,) —
—9(4 + 3p) ey(h . 4,),
B33(h . A,,,) = (8 — —1;,)‘23’ e2(11 . A,,,) + (623)1(23) — 36) 93(11 . A,,,) +
+9(4 — 395)ey(h . A,),
Byy(h.A,) =ei(h-A,) = (5967 + Pea(h - A,) + (46 + 9) ey 4,) -
— (63959 + 2) ey(h . A,) + 15296 es(h . A4,),
Byy(h.A,) =(9—59®)ey(h. A,) + 31479 — 90) e5(hr . A,)) +
+ (3 — 6391 ) ey(h . A,,,) + 135 ®ey(h . 4,),
By(h. 4,) = (9 + 1395) ex(h . A4,) + (18 + 257959) ey(h . 4,,) —
— (3] + 63y8Y) ey(h . 4 ,,,) + ‘jfy(*’e (h.A4,),
By(h.A,) =315 —=13y)e,(h. A,) — 2165 — 147y5Y) es(h . A4,,) +
+ (137 = 63 el An) = (1 = 9 el 4,).

The ARK-method has the consistency order n = 4, if the parameters y{?, ¢ = 3, 4,
1=0,1,...,q — 1, satisfy the conditions

(3) _ 44 (3) 3 _53 (3 (3

W= =% -2, » +77, 76V €eR,
4) _ _ 4 (4) _ 12 @) _ 12 (4) _ 15
Yoo = —11> "1 —r, Y2 = i1, V3 —I'f

as can be easily shown with aid of Theorem 1.
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3.2. S-stability of ARK-methods

As the A-stability of a numerical method does not guarantee a stable numerical
solution when a very stiff system with a variable Jacobian matrix is given, Prothero
and Robinson [11] introduced the stronger notion of the S-stability.

Definition 1. A4 one-step method is said to be S-stable if, for a differential equation
of the form

(3.15)  ¥(x) = A(¥(x) = H(x)) + r'(x), 2eC, Re(l) <0, r(x)eC'[0,x*].

the method yields a set of approximations {um} with the property that for any
constant s, < 0 there exists a constant hy > 0 such that

'jl!n:fi]ﬁ_i.wrrﬂ(rx*n,jll)’ <~ ] Wit11 X"l’ X"l+1 e [03 x*] b
Uy — I'(Xm) |

provided that u,, # r(x,,), for all step-lengths h € (0, hy) and all A with Re (1) < Z,.

Definition 2. A one-step method is said to be internally S-stable, if at each g-th
stage, q = 1,2, ..., s, the corresponding scheme of stage q is S-stable (see Verwer
[14])

Let us investigate the stability behaviour of the ARK-methods with respect to
the differential equation (3.15).

Applying

q
ulh = eo(ah . A u, + hy Byah.A)g;,-1, a=12..5,
i=1

to the scalar test equation (3.15) with A4,, = A we obtain

(q

q
uplh | = egla,z)u, + hy Baz)o,_,,
=

where
" R A I — =D 1D
(3.16) z=hl; Sy =r(xGi) = ar(xY)).
For
@ _ @ o (D) _ .
8m+1'“‘um+1 _’(xm+1 ) (1-152:'“,59

at the g-th stage we obtain the difference equation

(3.17)
d < 1
e = eo(ag7) ety + ”{Z Byj(a,) 9;-y + " Leo(a,2) r(xi2y) — r(x,(fli)]}
=1 )
with
55;?11 =ul, — "(X,(,,Oz,) .

We state the following theorem:
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Theorem 2. An s-stage ARK-method is internally S-stable, if and only if the step
parameters a,, q = 1,2, ..., s — 1, satisfy the condition 0 < a, < 1.

Proof. We use the following
criterion (see Verwer [14]): Let us assume that by applying an s-stage one-step
method to the equation (3.15) we obtain at each stage g the error equation

::?‘H = T( )":(;?11 + h{‘}’f,i'll z, I ’ + - [ ( ) (\’}noﬁ)-l - :r?*)-l)]}

g=1,2...5.
Then the s-stage one-step method is internally S-stable, if and only if
a) The stability functions Tq(z), g = 1,2,..., s, are strongly A-acceptable, ')

b) a constant i > 0 exists, such that the local error
. 1
A= VG ) + [T ) = ] g = 12 s,
1

is uniformly bounded on M := {(h, :)] he(0,h], Re(z) < 0.
The mean value theorem applied to

& = Z B,fa,z) 0,1 + - [eo(a ) r(xt ) = (k01
yields

(3.18) & =

sm

I_'Ma

Bua,2) PEE0) + 5 ) [ ealan?) = 3 Buag)] -

-

q
—zYy a;_y B(a;z)r(x, + O,_(a;_h) — a,7'(x,, + O,a.h)
ji=2

with 0 < @; < 1. Because of

q \
Zquj(aq:) — 44 e,(aqz) =0
5=

(see Section 3.1.) it follows that

q
(3.19) &0 = ZB,”(a z)r(x5)) — :.Zzaj_1 B,(az) r'(x, + ©;_,a;_h) —
=
— a, ¥ (x, + O,a.h).

Because the functions B,;(a,z) and z B,j(a,z) for ¢ = 1,2,....5;j =1,2,...,q are
uniformly bounded on {z | Re(z) < 0} for 0 < a, < 1, it follows from (3.19) that
£9 is uniformly bounded on M. The assertion follows immediately from the criterion.

O

) T,(2) is said to be strongly A-acceptable, ifiTq(z): < 1 whenever Re(z) < 0and lim :Tq(z): <
< 1 as Re(z) > —o0.
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Corollary. An ARK-method is always S-stable

Proof. This result follows immediately from Theorem

~

(s)  __ f(5)
um+ 1 ’(xm+l

O
Definition 3. An S-stable one-step method is said to be L-S-stable if in addition

—-0; x

U, — i(X,”)

Ny Xmt1 € [0’ ,\'*]
as Re (1) > —co, for all stepsizes h > 0

Fheorem 3. An ARK-method is L-S-stable, if and only if the conditions

(320) Tim =¥ By(2) = { 0 for a-
Re(z)= -
hold.

2, 0 <

1 “<1}. lef{l,2,....s)

Proof. From equation (3.17) and Definition 3 we see that we have L-S-stability
if and only if, for any i > 0, the local error

-1 for a,_,

It

e(s)
GCm

Z (2) 0,1+~ [e (2) rxini 1) = r(xi)]
Taking into account (3.16) and
lim By(z) =0
Re(z)— —w
we obtain

tends to zero as Re (z) » —

(3.21) lim &9 = — lim
Re(z)» —» ]1 Rc(:)—*-—oo
From (3.21) we obtain (3.20) directly

u[’j.,.

B ( ) ("\m+1 ) + V(Y" + h)]
nol =

Remark 5. The ARK-method (3.14) is L-S-stable, if and only if the parameters
0, 1, 2, 3, satisfy the conditions

4) _ .(4) _ (4 (4)
Yoo =790 =7y =0

» Y30 =1.
Other L-S-stable ARK-methods are given in [12]
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KONSTRUKCIA EXPLICITNYCH ZOVSEOBECNENYCH
RUNGOVYCH-KUTTOVYCH VZORCOV LUBOVOLNEHO RADU
S RACIONALNYMI KOEFICIENTAMI

ANTON HUTA, KARL STREHMEL

V c¢lanku obsahujiicom algoritmus explicitnych zovSeobecnenych Rungovych-
Kuttovych vzorcov Iubovolného rddu s raciondlnymi koeficientami su vySetrované
dva problémy vyskytujtce sa pri rieSeni zaCiatocnej ilohy obyc¢ajnych diferenc dlnych
rovnic, totiz urcenie raciondlnych koeficientov a odvodenie adaptivnej Rungovej-
Kuttovej metody. Zavedenim vhodnych substitucii do nelinedarnej stustavy podmien-
kovych rovnic sa obdrZi sastava linearnych rovnic, ktord md raciondlne korene.
Zovseobecnenie Rungovych-Kuttovych vzorcov je umozZnené zavedenim vhodnej
symboliky. Vychodiskom pri zostrojeni adaptivnej Rungovej-Kuttovej metédy bol
konzistentny s-stupniovy Rungov-Kuttov vzorec. Zdverom je vySetrend S-stabilita
adaptivnej Rungovej-Kuttovej metddy.

Author’s address: Prof. RNDr. Anton Huta, CSc., Ulica februarového vitazstva 131, 831 02
Bratislava, CSSR; Doz. Dr.Sc. Karl Strehmel, Sektion Mathematik, Martin-Luther-Universitit,
Halle-Wittenbterg, Weinbergweg 17, DDR — 4020 Halle, DDR.
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