Article
Keywords:
composite tetrahedral equilibrium element; two types of finite approximation; three-dimensional problem; polyhedral domain; Castigliano-Menabrea’s principle; minimum complementary energy; a priori error estimates; existence of strongly regular family of decompositions
Summary:
The tetrahedral stress element is introduced and two different types of a finite piecewise linear approximation of the dual elasticity problem are investigated on a polyhedral domain. Fot both types a priori error estimates $O(h^2)$ in $L_2$-norm and $O(h^{1/2})$ in $L_\infty$-norm are established, provided the solution is smooth enough. These estimates are based on the fact that for any polyhedron there exists a strongly regular family of decomprositions into tetrahedra, which is proved in the paper, too.
References:
[1] Л. Д. Александров:
Выпуклые многогранники. H. - Л., Гостехиздат, Москва, 1950.
Zbl 1157.76305
[2] J. H. Bramble M. Zlámal:
Triangular elements in the finite element method. Math. Соmр. 24 (1970), 809-820.
MR 0282540
[3] P. G. Ciarlet P. A. Raviart:
General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods. Arch. Rational Mech. Anal. 46 (1972), 177-199.
DOI 10.1007/BF00252458 |
MR 0336957
[4] P. G. Ciarlet:
The finite element method for elliptic problems. North-Holland publishing company, Amsterdam, New York, Oxford, 1978.
MR 0520174 |
Zbl 0383.65058
[5] G. Duvaut J. L. Lions:
Inequalities in mechanics and physics. Springer-Verlag, Berlin, Heidelberg, New York, 1976.
MR 0521262
[6] B. J. Hartz V. B. Watwood:
An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems. Internat. J. Solids and Struct. 4 (1968), 857-873.
DOI 10.1016/0020-7683(68)90083-8
[7] I. Hlaváček J. Nečas: Mathematical theory of elastic and elasto-plastic bodies. SNTL, Praha, Elsevier, Amsterdam, 1980.
[8] I. Hlaváček:
Convergence of an equilibrium finite element model for plane elastostatics. Apl. Mat. 24 (1979), 427-457.
MR 0547046
[9] C. Johnson B. Mercier:
Some equilibrium finite element methods for two-dimensional elasticity problems. Numer. Math. 30 (1978), 103-116.
DOI 10.1007/BF01403910 |
MR 0483904
[10] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Praha, 1967.
MR 0227584
[11]
Энциклопедия элементарной математики - Геометрия книга 4, 5. Наука, Москва, 1966.
Zbl 0156.18206