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SVAZEK 27 (1982) APLIKACE MATEMATIKY ČÍSL01 

AN EQUILIBRIUM FINITE ELEMENT METHOD 
IN THREE-DIMENSIONAL ELASTICITY 

MlCHAL KRIZEK 

(Received April 4, 1980) 

INTRODUCTION 

The aim of the present paper is to generalize the triangular composite equilibrium 
element — introduced by Watwood-Hartz [6] — for the three-dimensional space 
and to demonstrate its applicability to solving the dual three-dimensional problem 
of linear elasticity (a weak version of the Castigliano-Menabrea principle [7]). 

The triangular composite equilibrium element has also been analyzed by Hlavacek 
[8] and by Johnson-Mercier [9]. Stress tensors (2 x 2) of this element are defined 
on a triangle which is composed of three subtriangles (see Fig. 1). These tensors 
are symmetric and linear on any subtriangle and along any contact of subtriangles 

Fig. 1. 

the continuity of the stress vector is demanded. We emphasize that a single (not 
composed) triangle with linear stresses cannot be employed, since it has a small 
number of independent parameters on the sides to balance an arbitrary loading 
which is linear on any side (see [6, 8]). 

In Section 2, we introduce the composite tetrahedral stress element. Then we 
investigate two different types of a finite (piecewise linear) approximation of the dual 
elasticity problem on a polyhedral domain. F ôr both types we establish a priori 
error estimates 0(li2) in L2-norm and 0(/.1 / 2) in L^-norm, provided the solution 
is smooth enough. To obtain these estimates we also have to prove that for any 
polyhedron there exists a strongly regular family of decompositions into tetrahedra. 
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1. DUAL VARIATIONAL FORMULATION 
OF THE LINEAR ELASTICITY PROBLEM 

First, let us introduce some definitions and notations. Let Q 4= 0 be a bounded 
domain with a Lipschitz boundary [7, 10] in Rp which is equipped with the Euclidean 
norm ||.||. Note that a normal to the boundary dQ exists almost everywhere, the 
outward unit normal being always denoted by v. Let \xp be the Lebesgue measure on Rp. 
Denote the space of real infinitely differentiable functions with a compact support 
in Q by Q(Q). The Sobolev space of functions, the derivatives of which up to the 
order m exist (in the sense of distributions) and are square-integrable in Q, is denoted 
by Hm(Q). The usual norm and semi-norm in Hm(Q) are denoted by ||. |jw Q and I. L Q, 
respectively. The usual scalar product in L2(Q) = H°(Q) is denoted by (., .)0>Q. 
The space of real measurable functions which are essentially bounded (i.e., except 
a set of measure zero) is denoted by L^Q). 

If Z is a closed domain, Z = Q, we shall write @(Z), Hm(Z), L^(Z), ||-||w,z> \-\m,z 
instead of Q)(Q), Hm(Q), L^Q), ||. \\nuQ, |. \mQ for the sake of simplicity. 

If 0 =]= A c Rp is an open or closed domain, then Cm(A) denotes the space of real 
functions, the (classical) derivatives of which up to the order m are continuous in A. 
We write C(A) = C°(A). The space of polynomials of the order at most j defined 
on the set A is denoted by Pj(A) and we write 

nn vector: 
,up)

T, V 

as in L2(Q) and we put 

All vectors will be column vectors. Since there is no danger of ambiguity, the scalar 
product of u = (uu ..., up)

T, v = (vx, ..., vp)
T e[L2(Q)~\p is denoted by (., .)0Q 

(«> V)O,Q = ( Z (ui> vi)o,n)1'2 • 
i= 1 

Similarly, for v = (vu ..., vrf e [H'"(Q)]P we put 

\MU = (il»l\\ln)U2 and \v\m,a = ( f H ^ ) 1 ^ . 
i = 1 i = 1 

E\)r simplicity, the dual elasticity problem will be formulated only on polyhedral 
domains as we shall consider some finite element methods for its approximate solu­
tion later. Notice that in the mathematical literature there are many different defini­
tions of the polyhedron. Only the convex polyhedron is defined almost everywhere 
in the same way as the intersection of a finite number of closed half-spaces in R3 

which is bounded and has at least one interior point. In this paper we shall use the 
following definition of the (generally non-convex) polyhedron. 
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Definition. A polyhedron is a nonempty closed bounded domain in R3, the bound­
ary of which can be expressed as a finite union of polygons (where a polygon is 
a nonempty closed bounded domain in R2, the boundary of which can be expressed 
as a finite union of line segments). 

This definition evidently generalizes that of the convex polyhedron since it is known 
[1,11] that the boundary of any convex polyhedron is composed of a finite number 
of convex polygons. 

7~~71 

Pl Pz 

Fig. 2. 

From now on, let Q be the interior of the polyhedron on which the dual elasticity 
problem will be formulated. Except for Section 3, we assume that Q has a Lipschitz 
boundary, since this is assumed in the theory of elasticity. Fig. 2 shows a polyhedron 
which has a non-Lipschitz boundary, since the boundary in any neighbourhood of the 
points P. can be expressed only by a multivalued function in any coordinate system 
(while any Lipschitz function is one-valued). 

For simplicity, we put 

( • > - ) o " ( • > - ) o . ß > \m,Q • 

Assume that the boundary dQ is divided into mutually disjoint parts F0, Fl5 F2 

such that 

(VI) F0uFt u F 2 = a.Q, 

where F0 is the union of a finite number of line segments and F1? F2 are open in dQ, 
i.e., for any x e Fh i = 1, 2, there exists an open sphere Sf a R3 such that x e £f 
and Sf ndQ a F.. 

Henceforth, let a body force fe [L2(-^)]3
?
 a boundary force (load) g e [L2(I \)]3 

and a displacement u0 e [II*(.Q)]3 be given. In the case F2 = 0, we always assume 
that the equilibrium conditions for forces / , g and their moments are satisfied, i e., 

fáx + gås = 0, x x fáx + x x g ds = 0 . (1-2) 

We define the space of symmetric 3 x 3 stress tensors on the open or closed 
domain Z c H3 as 

T(Z) = {T 6 [L2(Z)]9 | T = TT} , T = T(fl), 
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and the set of statically admissible stresses as 

(1-3) £ ( / .# ) = { re T | 

where 

т . e(v) áx = vTfdx + vтg ás Vv є V} 

V= {vє[Hl(Q)Y j v = 0 on F2} 

is the space of irtual displacements, 

'дv (дv\т\ 
в(v) 

дx 
+ ,;г Ox 

is the infinitesimal strain tensor, dvidx is the 3 x 3 matrix of the first partial deriva­

tives of v, and 

(1-4) т.e(v) = t r ( т T ф ) ) = X тljЄi/v) 
- , 7 = 1 

Further, we introduce the generalized linear inverse Hook's law for a non-homoge­
neous and anisotropic material of the elastic body: 

3 

£ = A . T (Sij = X Aijkflkl), 
k,l-\ 

where we assume that A = (Aijklfijk^i e \_LO0(Q)Y1 , 

^/ j / c / = ^ji/d = Aklij 

and that there exists a constant C^ > 0 such that 

(1-5) q> . (A(x) • <p) ^ Cj<p||2 V<p = <pT e /J?9 

holds almost everywhere in Q. 

Definition. The dual problem of the linear elasticity consists in finding a which 
minimizes the functional (of the complementary energy) J : T —> [Rl defined by 

(1-6) J (T) = i \ T . (A . T) dx - I T . e(w0) dx = -U(T, T) - b(r), T e J , 
Jn J« 

over the set E(f, g). 

It is known [4, 5, 7] that this problem has a unique solution, since the symmetric 
bilinear form «(., .) is J-elliptic by (1-5) and since E(f,g) is nonempty, closed 
in T and convex. (Furthermore, s(u) = A . a, where u is the solution of the primary 
problem.) 

Definition. Let fe [L2(Z)]3, where 0 4= Z cz R3 is a closed or open domain with 
a Lipschitz boundary. If 

. s(v) dx = vJfdx Vv e [@(Z)Y 
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holds for T e T(Z), then we say that the divergence of the tensor T exists in the sense 

of distributions in Z and we define div T — —f in [L 2 (Z)] 3 . 

Note that the first generalized derivatives of T need not exist. But, if T E T(Z) n 

n [H*(Z)]9, then it is easy to show that 

d- = ( i^, i^i^y. 
\/=i cxj J=i dXj y=i dXjJ 

By the above definition, T E E(f, a) if and only if 

(1-7) d i v T + f = 0 in [L2(Q)f, Tv = g in [ L ^ ) ] 3 , 

where v is the outward unit normal to T1. (This easily follows by using the linear 

functional — see e.g. [5] — 

<тv, vv> (т . e(v) + vт di т) dx , w E [Hí/2(дQ)У , 

which does not depend on the extension v E [II1(.Q)]3 of the trace vv = vjdQ and which 

is bounded on [Hl'2(dQ)]3.) 

In Section 4 we shall construct spaces of finite elements of stresses such that the 

divergence of these elements will exist in the sense of distributions in Q. However, 

before that we present two important sections. 

2. THE TETRAHEDRAL COMPOSITE STRESS ELEMENT 

Let K be an arbitrary tetrahedron with vertices A, B, C, D and let E be an arbitrary 

fixed point of the interior of K. Divide K into four tetrahedra BCDE, ACDE, ABDE, 

ABCE and denote them by K1,K2,K3,K4, respectively (see Fig. 3). We call these 

tetrahedra the blocks of the tetrahedron K. Now, we have 10 triangular faces in this 

composed tetrahedron K: 4 external faces BCD, ACD, ABD, ABC and 6 faces 

ABE, ACE, ADE, BCE, BDE, CDE, which we call internal faces of the composed 

tetrahedron K. By a normal to an external or internal face S we shall understand 

a normal to the plane which contains 5. Thus, we can consider a normal to S also 

at the boundary points of S. 

Now, we define an auxiliary space 

fK = {t e T(K) | z\K{ e [ P , ^ , . ) ] 9 , i = 1, 2, 3, 4} . 

If T e TK, then we denote the linear extension of TJKi9 i = \, 2, 3, 4, to the whole 

space R3 by T{, i.e., x{ e [ P ^ 3 ) ] 9 . 

Definition. Let TETK. Then the stress vector TII is said to be continuous at the 

internal faces of K, if for any internal face S common to two different blocks 
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Tjfi on S. 

Kt, Kj, 1 ^ i < j S 4, we have 

(2-1) T,n 

where n is a normal to S. 

Next, we define the subspace TK of TK as 

TK = {T e T A I T/t is continuous at the internal faces of K} . 

The main purpose of this section is to show (similarly as in [9] for the triangular 

element) that the stress tensor z e TK is uniquely determined by: 

(i) the values of xn at three points, not lying in one straight line, of each external 

face of K, and 

(ii) j*T dx. 

Definition. A tetrahedral composite finite stress element is a triple (K, TK, {<!> p}^ A) 

where <Pp are junctionals defined on TK in the following manner: 

For any external face St = Kt n OK, / = V 2, 3, 4, select a normal nt and three 

points Mij e Sh j = 1, 2, 3, not lying in one straight line. Then for x e TK put 

(y) #9(i-i) + 3o-i)+*W = (T,-(M,V) ««•)* for i = 1, 2, 3, 4, j , fc - 1, 

(where (.)fc denotes the k-th component of a vector from R3), 

(yy) . *36 + iW = I TZI dx for l = 1, 2, 3 , 

3. 

Ф40W т 1 2 d x , Ф41(т) = т 1 3 d x , Ф42(т) 

The functional $>1 ?..., $ 4 2 are called the degrees of freedom of the tetrahedral 

composite finite stress element. 

The motives for this definition will be obvious from the proof of Theorem 2.1, 

where we show that {$p}*=i is a basis of the dual space [T x ] ' . 

Theorem 2.1. The dimension of space TK is 42 and for arbitrary real numbers 

<xx, ..., a42 there exists a unique tensor x e TK such that 

(2-2) 4>p(x) = ap for p = 1,...,42 

(i.e., t/je" set {^pjp^i /5 TK-unisolvent — see [4], p. 78). 

Proof is based on the following seven lemmas. We remark that the unisolvency 

of the triangular composite stress element is proved in [9]. However, the proof 

is based on the existence of Airy's function, the analogue of which in the three-dimen­

sional space (Maxwell's or Morera's stress functions) has a too complicated shape 

for our purpose. Therefore, we have chosen a way which leans only in the geometrical 

properties of tetrahedra and on basic results of linear algebra. 
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Lemma 2.1. Given a composed tetrahedron K, there exist such normals nu n2, n3 e 

R3 of the external faces BCD, ACD, ABD, respectively, that nx — n2, n2 — n3, 

3 — nx are normals of the internal faces CDE, ADE, BDE, respectively. 

Proof. Let Vi vя є i be the outward unit normals of the faces BCD, ACD, 

ABD, respectively, of the tetrahedron ABCD. Put n{ = vv Since the planes BCD, 

CDE, ACD contain the straight line CD, their normal vectors are linearly dependent. 

Fig. 3. 

Hence, there exists a unique constant /? e Rl such that nx — /iv2 is the normal of 

CDE and we put n2 = fiv2. By investigating analogously the planes BCD, BDE, 

ABD we find that there exists a unique y e Rl such that yv3 — nx is the normal 

of BDE. Therefore, we put n3 = yv3. 

To complete the proof, we must show that n2 — n3 is the normal of ADE. The plane 

ADE has a common straight line, DE, with the planes CDE (with the normal nt — n2) 

and BDE (with the normal n3 — n{). Hence, there exists a unique a e W 1 such that 

(2-3) a(и. - и 2) - (и3 

is the normal of ADE. However, the plane ADE has a common straight line, AD, 

with ACD (with the normal n2) and ABD (with the normal n3). Therefore, the normal 

of ADE can be expressed as a linear combination of only n2 and n3 (independently 

of nx). Thus, a = — 1 in (2-3) and n2 — n3 is the normal of ADE. « 

Lemma 2.2. Let nu n2, n3 e R3 be linearly independent vectors and let Pi9 P2, P3 

be symmetric 3 x 3 matrices such that 

Pin, = P2n2 = P3n3 = 0 , 

P\n2 = - P 2 « l , P2«3 = - ^ 3 ^ 2 , -°3"l = ~Pin3 • 

Then Px = P2 = P3 = 0. 
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Proof. We show that nJP1nj = 0 for any i,j, 1 ^ j ^ / ^ 3, since then certainly 
Pj = 0. Obviously, 

n]Pinx = 0 for / = 1, 2, 3 . 

Further, the assumptions imply 

nT
2Pln2 = -n"[P2nx = -n]P2n2 = 0 , 

" l P r " 3 = " " I ' V i = ~/iTP3«3 = 0 . 
Finally, 

"IPi«2 = -«lP2Wi = -n\P2n3 = «TP3«2 = " IPs" ! = -"2P1W3 = - " I P i " 2 > 

which yields /?3"PJ/i2 = 0. Thus, Pj = 0. Similarly, it can be proved that P2 = P3 = 0. 
m 

Lemma 2.3. If T e TK and in = 0 on OK, then T = 0 on OK. (in detail: if Tini = 0 
O/7 St = Kj- n 3K, / = 1, 2. 3, 4, where nt is an arbitrary normal to Sh then T{ = 0 
on St for i = 1,2,3,4.) 

Proof. Let T e TK and let nu n2, n3 be the normals from Lemma 2A , which are 
evidently linearly independent. Since the external faces St, S2, S3 contain the vertex 
D, we have from the assumptions 

(2-4) xt(D) nx = T2(D) n2 = x3(D) n3 = 0 . 

The vectors nx — n2, n2 — n3, n3 — n1 are normals of the three internal faces, 
which contain the vertex D. From the continuity of the stress vector at the internal 
faces, we get 

Tx(D)(nx - n2) = T2(D)(nx - n2) , 

T2(D)(n2 - n3) = x3(D)(n2 - n3) , 

^(D)(n3 - nx) = T,(.0)(w3 - n , ) . 

Then by (2-4) 

TX(D) n2 = -T2(D) nx , T2(D) n3 = -T3(D) n2 , T3(D) nx = -TX(D) n3 . 

Applying Lemma 2.2 to the matrices P,- = T^D) for / = 1, 2, 3, we find 

(2-5) T,(D) = 0 , / = 1,2, 3 . 

In the same way we find that 

(2-6) xt(A) = 0 , i = 2, 3, 4 , 

xt{B) = 0 , / = 1, 3, 4 , 

T.(C) = 0 , i = 1 ,2 ,4 . 

Hence, the linearity of T; implies that xt = 0 on Sh i = 1, 2, 3, 4. • 
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Lemma2.4. Given a composed tetrahedronK, there exist such normalsn1,n2,h~3e 
e R3 of the internal faces BC£, AC£, AB£, respectively, that nl — w2, w2 — w3, 
n3 — w, are normals of the internal faces CDE, ADE, ABE, respectively. 

Proof is identical with that of Lemma 2.1 after interchanging the letters D and £. 
n 

Lemma 2.5. If T e TK, then 

(2-7) T . ( £ ) = T2(E) = r3(£) = U(E). 

Proof. Let T e TK and let w1? w2, w3 be the normals from Lemma 2.4, which are 
linearly independent. Since all internal faces contain the point £, we have from 
(2-1) that 

ij(£) w, = T 4 ( £ ) w, . T 2 ( £ ) w2 = T 4 ( £ ) w2 , r3(£) w3 = T 4 ( £ ) W3 , 

^ l ( ^ ) ( / 7 l ~ / 72) = T 2 ( £ ) ( ' 7 l ~ > 7
2 ) , 

T 2 ( £ ) (w2 - w3) = r3(£) (w2 - w3), 

^ ( ^ ( ^ ~ >7i) = -Ci(E)(n~3 ~ >70 • 

Setting Pt = T {(£) — T 4 ( £ ) for i = 1, 2, 3, we can transform the above system 
into the form 

IV7! = iV72 = ^3>73 = 0 , 

P,(w, - w2) = P2(/T1 - w 2 ) , 

^ ( ' 7 2 - >7
3) = /J3(>72 - n3) , 

P3(/73 - w,) = P,(w3 - w,) . 

Now, from Lemma 2.2 we see that P, = P2 = P3 = 0 • 

Let us note that lemmas analogous to Lemma 2.3 and 2.5 could be easily proved 
also for the triangular composite stress element. Finally, we shall use two following 
well-known and simple lemmas for the proof of Theorem 2.1. 

Lemma 2.6. Let Y be a linear space of a finite dimension m and let Ap, p = 1, ..., r, 
r rg m, be linear functional^ on Y. Then the dimension of the space 

[y e Yj A„(y) = 0, p = 1,...,-} 

is at least m — r and the dimension of this space is equal to m — r if and only 
if the junctionals Ap are linearly independent. • 

Lemma 2.7. Let K' be an arbitrary tetrahedron with vertices A,, A2, A3, A4 and 
a gravity center G. Then 

f p dx = yh(K') Y p(Ad = p3(K') p(G) 
J K' i - 1 -

for any pe [Pi(K ')]m (m integer). • 
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Proof of T h e o r e m 2.1. First we show that dim TK S 42. Let r e TK and let 
<Pp(x) = 0 for any p = 1, ..., 42. Then obviously xn = 0 on OK and fK x dx = 0. 
From the linearity of x on any block, from Lemma 2.7 and (2-5), (2-6), (2-7) it and 
follows that 

0 = J Tdx = i f T,dx = {^K^ix^B) + T , (C) + t.(D) + T , ( £ ) ) + . . . 
JK i=lJKi 

••• + k fh(K4) (t4(A) + T 4 (B) + T 4 (C) + T 4 ( £ ) ) = \ X n3(K;) - .(£) , 

i.e., T((E) = 0 for i = 1, 2, 3, 4. Thus, we see that xt attains the zero value at all 
vertices of any block K„ i = 1, 2, 3, 4. Hence, T = 0 on the whole K and by Lemma 
2.6 we have 

(2-8) 0 = dim {T e TK \ <Pp(x) = 0, p = 1, ..., 42} ^ dim 7X - 42 . 

Farther we show that dim TK ^ 42. Since a symmetric stress tensor has six inde­
pendent components and since dim Pj(K,) = 4 for / = 1, 2, 3, 4, we immediately 
see that dim TK = 6 x 4 x 4 = 96. Let ii be a normal of the internal face S = K. n 
n K2 and let N E S. For T e Tx we define functional ¥k, k = 1, 2, 3, by 

^ ( T ) = (Ti(N) n - t2(N) n)k , 

where, as above, (.)k denotes the fc-th component of a vector from R3. If we select 
from any of the six internal faces three points not lying in one straight line, we can 
analogously define 6 x 3 x 3 = 54 linear functionals Wu...9 W54 on the space 
TK. It easily follows that all these functionals vanish if and only if x e TK, i.e., if the 
stress vector is continuous at all internal faces of K (see (2-1.)). Thus, by Lemma 2.6, 

dim TK = dim [T e TK \ ^ ( T ) = 0, q = 1, ..., 54} ^ 96 - 54 = 42 , 

and together with (2-8) this gives dim TK = 42. 

Using Lemma 2.6 again, we observe that the functionals &p are linearly independent, 
since now (2-8) turns to equality. The existence and unicity of the tensor x e TK 

satisfying (2-2) are now obvious. • 

3. EXISTENCE OF A STRONGLY REGULAR FAMILY OF DECOMPOSITIONS 
OF A POLYHEDRON INTO TETRAHEDRA 

The results of this section will be used not only to construct the space of the finite 
elements, but also mainly for the convergence proofs of Sections 6, 7 and 8. 

Definition. A finite set of tetrahedra is said to be a decomposition of the polyhedron 
Q into tetrahedra if 

(i) the union of all these tetrahedra is Q, 
(ii) the interiors of these tetrahedra are mutually disjoint, 
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Theorem 3.1. For any polyhedron there exists a decomposition into tetrahedra. 

The proof is based on an auxiliary lemma. 

Lemma 3.L For any polyhedron Q there exist convex polyhedra Q{, ..., Qr such 
that 

(y) the union of all Qp, p = 1, ..., r, is Q, 
(yy) the interiors of these convex polyhedra are mutually disjoint, 

(yyy) any face °f any polyhedron Qp, pe {1, ..., r}, is either a face of another 
polyhedron Qq, q 4= p, or a subset of the boundary dQ. 

Proof of Lemma 3.1. Let Q be an arbitrary polyhedron and let P1, ..., Pk be poly­
gons the union of which is cQ. Let P1, ..., Rk be planes such that P1 c. R{, i = 1, ... 

k 

..., k. Finally, let Qi, ..., Qr a R3 be all components of the set Q\ (J Rl (i.e., the 
i = 1 

components which arise by "cutting" Q by the planes RJ). We show that Qp, p = 1, ... 
..., r, are the convex polyhedra sought (their number is finite, because k planes 
divide the space R3 into 2k parts at most). 

k 

Since dQ c U P'? it follows that 
i = I 

k k 

Q\ \J Rl = Q\ U Rl. 
i = 1 i = 1 

This set is open since Q is open and U Pz is closed, i.e., £>p are open connected sets. 
i = l 

Let pe {1, ..., r} be fixed. Any plane Rl, i = 1, ..., k, splits the space /y?3 into two 
halfspaces. Denoting by Q1 that closed halfspace with the boundary plane R( which 
contains Qp, it is easy to show 

k 

sP = n Q' . 
i= 1 

Hence, Qp is a convex polyhedron, since the set Qp is bounded and contains at least 
one interior point. 

r k 

Using the definition formula (J Qp = Q\ \J R\ we find that the condition (y) 
P=I i = i 

holds. Since any two components Qp, Qq, p =j= q, are separated by at least one plane 
R\ (yy) holds. It remains to verify (yyy). 

Let x be an interior point of a face S of the convex polyhedron Qp and let x e dQ , 
q 4= p- Suppose, for the moment, that x lies on an edge of the convex polyhedron Qq. 
Then x must lie in at least two different planes R% R\ s, te {1, ..., k}, But this is 
a contradiction, since x is an interior point of S. Hence, x is also an interior point 
of a face S' of the polyhedron Qq and we deduce that S and S' have common interior 
points, i.e., S = S'. If the face S of Qp does not coincide with a face of any other 
polyhedron Qq, q =j- p, then it is easy to see that S c dQ. • 
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Proof of T h e o r e m 3.L Let Q a R3 be an arbitrary polyhedron and let Ql9 . . . 
..., Qr be the convex polyhedra from Lemma 3A. We shall divide all these convex 
polyhedra into tetrahedra in the way described in [11]. Let p e {1, .... r} be arbitrary. 
As has been said, all faces of the convex polyhedron (2pare convex polygons. Denoting 
by Bl9 ..., Bj (for instance, counter-clockwise) the vertices of any face we can divide 
this face into the triangles B{B2B3, B1B3B4, ..., BiBj__{Bj. Let {Su

p}^{ be the set 
of all triangles which are obtained in this way on the surface of the polyhedron Qp 

(see Fig. 4). In addition, we require that common faces of two convex polyhedra 

Fig. 4. 

(i.e., faces S a Qp, S' cz Qq, p 4= q, such that S = S1) be divided into triangles 
Cwin the same manner". Let Ap be an arbitrary interior point of the polyhedron Qp. 
The convex hull Kp of the triangle Su

p and the point Ap is a tetrahedron. Introduce 
the set 

® =" iK\P= U . - . , r , u = \9...9mp}. 

Utilizing the conditions (y), (yy), (yyy) from Lemma 3.1 as well as the fact that 
a possible common face of two convex polyhedra Qp, Qq9 p #= q, is divided into 
triangles in the same manner, it is easy to show that the finite set Q) satisfies (i). (ii), 
Oii). • 

Denote by hK ( = diam K) the length of the largest edge of a tetrahedron K. To any 
decomposition Q) if the polyhedron Q into tetrahedra we assign the real number 

(3-1) hrj — max hK . 
KerJ 

The number h$ is called the norm of the decomposition Q. 

Definition. A set of decompositions Wi of the polyhedron Q into tetrahedra is called 
a family decompositions if for any s > 0 there exists a decomposition Q) e SM 
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Definition. A family of decompositions M of the polyhedron Q into tetrahedra 
is said to be regular (strongly regular) if there exists a constant x > 0 such that 
for any decomposition &) e 9JJ and for any tetrahedron K e Q) there exists a sphere 
Sf K with a radius QK such that <9\ c. K and 

(3-2) xhK S QK ( ^ .= QK) • 

(iii) any face of any tetrahedron in the decomposition is either a face of another 
tetrahedron in the decomposition, or a subset of the boundary cQ. 

The constant x is said to be coefficient of the regular (strongly regular) family 9ltt. 

Obviously, any strongly regular family is regular. Note that a strongly regular 
family of triangulations of a polygon (the definition is analogous) is easy to obtain 
due to the fact that any triangle in the triangulation is divided by midlines into four 
coinciding triangles, which are similar to the original one. In three-dimensional space 
the situation is considerably more complicated, since it may not be possible to divide 
any tetrahedron into more coinciding tetrahedra which would be similar to the 
original tetrahedron. 

Theorem 3.2, For any polyhedron there exists a strongly regular family of de­
compositions into tetrahedra. 

Proof will be composed of three parts — a), b), c). 

a) First, we prove the theorem for the simplest polyhedron — tetrahedron, which 
will be particularly selected. So let Q ~ K, where K is the tetrahedron with the verti­
ces A, B, C, D having the coordinates (i , 0, 0)T, ( - £ , 0, 0)T, (0, 4, | ) T , (0, ~\, i ) T , 
respectively (see Fig. 5). The length of the opposite edges AB and CD is equal to 1 
and the length of all other edges is ^3 /2 . Denote by M1, M2 , M3 , M4 , M5 , M6 the 
midpoints of AB, AC, AD, BC, BD, CD, respectively and divide the tetrahedron K 
into eight tetrahedra (see Fig. 5): 

AM1M2M3, BM1M4M5, CM6M2M4, DM6M3M5, 

MlM6M2M3, M^e^i^h, MtM6M3M5, M1M6M4M5. 

It is easily seen that all these tetrahedra form a decomposition of K. We denote 
by Q)x this decomposition and put Q)0 = {K}. The length of the edge JM1M6 is \ 
since the coordinates of the end points are (0, 0, 0)T, (0, 0, 4)T. The length of all 
the edges which are the midlines of the external faces of K and which are parallel 
with AB or CD is \ as week Therefore, the length of the edges 

AMU BMU M2M4, M3M5, CM6, DM6, M2M3, M4M5, MtM6 

is equal to 4 and for any tetrahedron of £^1 precisely two of these edges are opposite. 
The length of all remaining edges of the tetrahedra of §}l is ^/3/4. Hence, all tetra­
hedra of £#t are coincident and similar to the original tetrahedron K. If Q is the 
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Fig. 5. 

radius of the inscribed sphere of K then the radius of the inscribed sphere of any 
tetrahedron of 0){ is evidently \Q. Any tetrahedron of 5 } can be divided in the same 
way into eight coincident tetrahedra similar to K again and we obtain the next 
decomposition 3)2. Repeating this process to infinity, we get the family of decom­
positions {^w}w = o» since the norm of £)m is 2~m. Moreover, this family is strongly 
regular since the corresponding coefficient x can be chosen as x = 2~mQl2~m = Q. 

b) Consider Q = K, where K is an arbitrary tetrahedron with vertices A, B, C, D, 
the coordinates of which are 

(3-3) a = (ai9a29a3)
T

9 b = (bi9 bl9 b3)
T , c = (ci9 cl9 c3)

T , 

d = (dl9d29d3y. 

We introduce an affine one-to-one mapping F : K —> K given by 

(3-4) F(x) = Qx + q , x e K , 
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where q = (a + b)/2 and Q = (O — b, c — d, c + J — a — b) is a regular matrix 
as F(A) = A, ..., F(15) = £>• This mapping transforms the edges of K onto the corres­
ponding edges of K, the midlines of the faces of K onto the midlines of the correspond­
ing faces of K and so on. Therefore, for m = 0, 1, 2, ... the set 

9m = {F(K') | K' e §m) 

is also a decomposition of K. Let em be the largest edge of all tetrahedra from Q)m, 
its length being h9m, and let lim be the length of the corresponding edge em = 
= F~1(em). According to (3-4) and part a) we have 

(3-5) hSm^ \\Q\\hmS | |Q | |2-m , m = 0 , 1 , 2 , . . . 

Thus, {@m}m=o is a family of decompositions of K. 
Denote by Sf the inscribed sphere of K, i.e., 

& = {x | ||x - jc0|| ^ £} c K, 

w here x0 = (0, 0, ^) is the centre. Then 

F(Se) = * = (x I H Q - ^ X - q) - No|| ^ £} <= K 

is the ellipsoid with the centre x0 = Q~lq + x0 which is inscribed in K. Denote by O 
the length of the shortest semi-axis of $ and let Sf be the sphere with the centre x0 

and the radius O. Then Sf £= $ a K. According to a), the radius of all the inscribed 
spheres of the tetrahedral from Sfm is 2~mQ. Hence, the mapping F transforms all 
these spheres onto ellipsoids that are coinciding and similar to $. These ellipsoids 
will be inscribed in the corresponding tetrahedra from <3m and, obviously, the length 
of their shortest semi-axes will be 2~mO. One immediately sees that for any K' e 3m 

there exists a sphere Sf' with the radius 2~mg such that Sf' cz K'. Consequently, the 
family {2#m} is strongly regular and since (3 — 5) implies 

2"mO 2'mQ Q 

l ^ = 2^ie]| " |e | | ' 
the corresponding coefficient x can be chosen as x = O/||6||. 

c) Let Q be an arbitrary polyhedron and let Q) be an arbitrary decomposition 
of Q into tetrahedra. According to b), a strongly regular family {Q)m(K)}m=z0 with 
a coefficient xK corresponds to any K e 3). Setting 

@m--\J®m(K)9 m = 0 , 1 , 2 , . . . , 

we can easily verify that ^ m is a decomposition of Q. The norm of *3)m is evidently 
max hrJm{K). Thus, {̂ ,M}ro = 0 ^s a family of decompositions of Q, since according to b) 
KeQ 

h®m(K) ~* 0 a s m ~* °° 

for any K from the finite set ^ . This family is strongly regular, since the corresponding 
coefficient x can be chosen as x = min xK. • 

Re £2 
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Now, we investigate the question whether there exists a decomposition of Q such 
that the parts F,, F2 satisfying (1-1) are covered by whole faces of tetrahedra of the 
decomposition (see Fig. 6). 

Fig. 6. 

Definition. Let the parts F0, F}, F2 Of the boundary of Q satisfy (1-1). Then 
a decomposition & of Q is said to be consistent with Tt and F2 if the interior of any 
face of any K e <@ is disjoint with F0. 

Theorem 3.3. Let the parts F0, F1? F2 Of the boundary of Q satisfy (VI). Then there 
exists a strongly regular family of decompositions of Q (into tetrahedra) consistent 
with T1 and F2. 

Proof. Let P1 and R\ i = V ..., k, be the polygons and the planes, respectively, 
from the proof of Lemma 3.1. Let F0 =# 0 (the case F0 = 0 was proved in Theorem 
3.2) and let p1, ..., pl be the line segments the union of which is F0. Evidently, for 
any pJ, j = 1, ..., /, there exists a plane RSj\ sf e {l, ..., k} such that pJ a RSJ. Denote 
by Rk+J the plane such that pj c Rk+J\ which is perpendicular to RSJ. Let Qu ...,£>,. 

k+i 

be all components of the set Q\ \J Rl. Now, proceeding as in the proofs of Lemma 
i= i 

3A, Theorems 3A and 3.2, we obtain the strongly regular family {^m}^=0 of de­
compositions of Q. Since any line segment pJ\ j = V . . . , / , is included in at least 
two different planes Rs, Rf, 1 ^ s, t rg k + /, the interior of any face of any K e 9Hm9 

m = 0, 1, 2, ..., is disjoint with F0. • 

4. FINITE ELEMENT SPACES 

Let 9) be an arbitrary decomposition of Q into tetrahedra. We define the finite 
element spaces corresponding to the decomposition Q> similarly as in [9]. The space 
of the finite elements of stresses is the space 

J s = { T e T s | d i v T e [ L 2 ( í 3 ) ] í } , 
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where 
T$ = ( r e TJT/KG TK, K e 9} , 

and the space of finite elements of displacements is 

VQ = {DE [L2(fO)]3 | v/K e VK, K e £ }̂ . 

Obviously, T^ cz T, but the analogous inclusion between V(3 and V does not hold 
in general. Now, we describe the character of tensors of TB. 

Definition, Let TG T@, Then the stress vector Tn is said to be continuous at the 
external faces of the tetrahedra of Q), if for any face S common to two different 
tetrahedra K, K' e Q) we have 

(4-1) Ttn = Tjii on S , 

where n is a normal to S, Tt and T'J are the linear extensions of x\K{ and x'JKj, 
respectively, to the whole space R3 and Kr- cz K, Kj cz K' are blocks such that 
S = K; n Kj. 

Lemma 4,1, Let T G TQ. Then T G TQl if and only if TH is continuous at the external 

faces of the tetrahedra of Q). 

Proof . Let TE T9 and let S - K; n K), Kt cz K, Kj cz K', K, Kf e @y K 4= K'. 

Using Green's theorem, we have for ve [^(Kj U K / ) ] 3 

(T . s(v) + vT div T) dx = vTTV ds = vTT;Vf- ds , 
J Ki jKi Js 

(T . e(v) + vT div T) dx = VTTV ds — vT T'JVJ ds , 
JKj' JS 

where \\ = — Vy is the unit normal to S (outward to Kf). Since the divergence of T 
exists in the sense of distributions also on the subset Kt u K^. cz Q, summing both 
the above identities gives 

0 = | vT(TfV; - TjVi) ds Vv e [&(Kt u Kj)]3 , 

i.e., particularly for all v G [^(S)]3- Thus, T ^ — T^V- = 0 on S. 

Conversely, let T G T& and let xn be continuous at the external faces. Since div T 
exists in any block, 

(4-2) т . e(v) dx L vTdivTdx V v e [ ^ ( . Q ) ] 3 . 

Define fe[L2(Q)f by 

/ / K , - - d i v T V X J C J C , 1 = 1 , 2 , 3 , 4 , VK e @ . 
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Summing (4-2) for all / = 1, 2, 3, 4 and all K e £?, we see that 

т . e(v) dx = £ V 
ß Rєííí К . ^ 

vTTvds + v fdx 
J ß 

vTfdx Vve[r^(í2)]3 , 

since (2-1) and (4-1) hold. Thus, — fis the divergence of T in the sense of distributions 
on the whole Q and T e TQ. • 

Now, one sees that Green's formula 

(4-3) T . £1 (v) dx + vт di т dx vTTv ds , ve VK , 

holds also for T e TK (the components of which are not from II'(K)). 

We denote by F(^) the set of all external faces of all K e £<?, i.e., 

T(9) = {S c ^ 3 | S is an external face of K e 9} . 

It is clear from Section 2 that T G T^ is uniquely determined by: 
(i) the values of in at three points, not lying in one straight line, of each S e T(<3)), 

(ii) JXT dx for each K e Q). 

Analogously as in Section 2, we could define the degrees of freedom <Pl, ..., <Pr 

of the space TQ, where r = dim TQ = 9 card F(^) + 6 card £2. Now, we show 
that the definite element spaces of stresses and displacements have the so-called 
equilibrium property (see [9]). 

Lemma 4.2. IfT e TQ and (v, div T)0 = OfOr all v e VQ, then div T = 0 in [L2(:Q)]3. 

Proof. Let KeB be arbitrary and \ti Gh i = \, 2, 3, 4, be the gravity centers 
of the corresponding blocks Kh Clearly, G1G2G3G4 cannot be a degenerate tetra­
hedron, since it is similar to the tetrahedron G^G^G^G^, where G\ are the gravity 
centers of the faces St = Ktn OK, and G[G2G3G'4 is similar to the mirror image 
of K. Thus, we choose vjk e VQ,j = 1, 2, 3, 4, h = 1, 2, 3, such that vjk\K = 0 for any 
K' e Q), K' 4= K, and we can define vjh linear on K so that 

Pjk(Gj) = (Slk, S2k, S3kY , vJk(Gt) = (0, 0, 0)T for l+j, le {1,2, 3, 4 } , 

where c)m/. is Kronecker's symbol. Using Lemma 2.7, we obtain 
4 (• 4 

vjfc div T dx = X vT div rt dx = £ l ^ . ) vT
k(Gt) div T,- = 

i = 1 J R ,• i = 1 

= /i3(X,) ^ ( G , ) div T, = / i3(K,) (div T,)t , 

where (div T;)/C denotes the k-th component of the constant vector div T,-. Therefore, 

div Tj = (0, 0, 0)T for j = 1,2,3,4. • 

5. EXTERNAL APPROXIMATION OF THE DUAL PROBLEM 

As in Section \, let fe [L2(£>)]3, g e [ L ^ F ^ ] 3 and let (1-2) hold if F2 = 0. For 
an arbitrary decomposition Q of Q consistent with Tx and F2 define the set of statically 
admissible approximations of stresses (cf. (1-7)) 
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Es(f,g) = UeT: vT div T dx = - vTfdx Vv e VQ , 

J vTTV ds = J vTg ds Vv e Vs , VS e r(3f), S c Ft 1 . 

Definition. AD external approximation of the dual problem (corresponding 
to the decomposition &) consists in finding a& which minimizes the functional 
(1-6) over the set E@(f a). 

Theorem 5.L There exists a unique solution oQ of the external approximation 
of the dual problem. 

The proof is based on two auxiliary lemmas. 

Lemma 5.L Let K e 9, g e [L2(dK)Y and let 

(5-1) vvVdx + wTg ds = 0 Vvv e WK = {v e VK \ s(v) = 0} 

J K JdK 
(i.e., the equilibrium conditions for the forces f g and their moments are satisfied 
on K). Then there a unique T E TK such that 

(5-2) vT div T dx = - vTfdx Vv e VK , 
J K J K 

(5-3) vTTv ds = vTg ds Vv e Vs 

and for all external faces S of K with the outward unit normal v. 

Proof. Existence. By Riesz Theorem, for any external face S of K there exists 
a unique t e Vs such that 

(5-4) vTt ds = vTg ds Vv e Vs . 
Js Js 

We choose T E TK such that (see Section 2) 

(i) TV = t on O'K, 
(ii) JKr dx = i (fK(xf + fxT) dx + $gK(xgT + gxr) ds) . 

Then evidently (5-3) holds. Let v e VK be arbitrary and let 

(5-5) v = u + vv , u E UK , w E WK , 

where UK is the orthocomplement of WK in VK. Using (1-4) and the symmetry of the 
constant tensor s(v), we see that 

T . s(v) dx = T . e(u) dx = U\ (xf + fxT) dx + (x^T + ^xT) ds ) . s(u) = 
JK JK \JK JOK J 

64 



= í Ê(M). (xfr) dx + s(u). (xgт) ds = tr £(u)xfTdx + £(i/)xO;т ds 

= tr ufdx + ugT ás 1 = uTfdx + uTg ás . 

Hence, (4-3), (5-1), (5-4) and (5-5) imply 

vT div T dx = — T . e(v) dx + uTrv d 
JK JK JdK 

\vTTv ds 

u fáx - u g ás + uтg ds wTfdx = - i?fdx. 

Unicity. Let T', T" E TK satisfy (5-2) and (5-3). By (4-3), we have $K(T' - T") . 

. e(v) dx = 0 for any v e VK. Thus, f K(T' — T") dx = 0 and since (T — T") V = 0 

on OK, we get T' - x" = 0 on K. s 

Lemma 5.2. The set EjJ, g) is nonempty. 

Proof. Let us number the tetrahedra of Q) in this manner: Let K1 e Q) be arbitrary. 

Successively, we denote by KJ e <39j = 2, ..., m ( = card £^), an arbitrary tetrahedron 
which is different from K1, ...,KJ~l and which has a common face with at least 
one tetrahedron K1, ..., Kj~ l . Let 

k 

Qk = U K'\ k = 1, ..., m . 
; = i 

We shall define a certain extension g* of g to all faces S e Y($)) in such a way that 
the equilibrium conditions for the forces f, g* and their moments will be satisfied 
on any Qk, which is evidently a connected set (a polyhedron). 

First, we define g* on cQm = cQ. We put g* = g on Ft. In the case fi2(T2) > 0, 
we put in addition 

g* = 0 on any S c F2 , S + S', S e F(S), 

where S' e F(^) is a fixed face in F2. It is easy to see that on this remaining face 
S' c: dQm, g* can be defined (e.g., as a linear function) so that 

wTfdx + wTg* ds = 0 Vw e WQ = {v e VQ \ e(v) = 0} . 
J Q™ J dQm 

Next, we define g* step by step on S e T(@), S 4: dQ. Let j successively attain the 
values m, m — 1, ..., 2. 

Let Sj, ..., S(j9 kj e {1, 2, 3, 4}, be all external faces of KJ which belong to dQj~l. 
Then we define an auxiliary function gJ e [L2(O

,KJ)]3 by 

gj = 0 on S7
2, ..., SJ

kj, 

gj = ^*on S/. + 1, ..., SI, 
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and we choose g' linear on the remaining face S{ so that 

wTfdx + wTgJ ás; = 0 Vw e WQ . (5-6) 

Setting now 

(5-7) g*= -gj on S{,...,SJ
kj, 

we see that the forces/, g* and their moments are equilibrate on QJ~ [ , i.e., 

J. wTfáx + w"V ds = 0 MweWQ, 
ЄQJ-

since 

wTfáx + wTg* ás = 0 Vw e JVfi 
2-/ J d.Q-" 

Finally, for j = 1 we put gl = a* on OK1. 
Let T- G TKJ, 7 = 1, . . . , m, be the tensor from Lemma 5.1 which corresponds to the 

forces / , gJ satisfying (5-6) on KJ. Define f e T^ by 

on K, .., m . 

Using (5-3) and (5-7), it is easy to show that Tn is continuous at the external faces 
of the tetrahedra of Q). Therefore, by Lemma 4.1, f 6 T9 and evidently f e EB(f, g\ • 

Proof of T h e o r e m 5.L The set E&(0, 0) is closed in T, since it is a finite-dimen­
sional subspace of T. Thus, the nonempty set 

Ecj(f, g) =- E9(0, 0) + f , 

where f e EjJ, g), is closed in J and obviously convex. Using the J-ellipticity of the 
symmetric bilinear form a(., .) in (1-6), we get that the solution a$ e EB(f, g) exists 
and is unique (see [4], Theorem 1.1 A). • 

Lemma 5.3. £^(0, 0) c E(0, 0). 

Proof. Let T e EB(0, 0) c T. Since xv\S e Vs for S e T(9) and 

vTTvds = 0 Vve Vs, S c Tl9 I 
we get TV = 0 on Fj. Together with div T = 0, which follows from Lemma 4.2, we 

have by (1-3) and (1-7) j > . e(v) dx = 0 Vv e V. • 

Theorem 5.2. There exists a constant C(a) such that 

Ik ~ *-?||o = c(a)inf (Ik - T^||o I % e £<-,(/, g)} . 

Proof. The functional (1-6) attains its minimum over the set E(f, g) at a if and 
only if (see [4], Theorem 1.1.2) 

a(a, x — a) ^ b(x — a) Mx e E(f, g) . 
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Therefore, 

-fa.*)- Kx) V/eE(0,0) 
and analogously we obtain 

a(aa, Xa) = «(Z9) V f e e Es(0, 0 ) . 

Thus, by Lemma 5.3, 

a(o - <j6J, GB - Xcj) = 0 VT^ e F^(f, a) . 

Using (1-5), (1-6) and the Schwarz inequality, we obtain 

CA\\G — Cr^||o ^ «(G" — 0"-, G — <7^) = fl(<7 — G^, G — T@) ^ 

^ Cs||(7 - (T-||o ||ff- - T^|o 

for any T^ e F£/(f, g). H 

Note that this theorem has been obtained by modifying Cea's lemma (see [4], 
Theorem 2.4.1), where the infimum is taken over the whole space of finite elements 
and not only over a subset, as was the case in the present proof. 

6. L2-EST1MATE FOR THE EXTERNAL APPROXIMATION 

In this section we use a standard convergence technique (see [2, 4, 8, 9]). First, we 
introduce the composed reference tetrahedron K with the vertices A, B, C, D the co­
ordinates of which are (1,0, 0)T, (0, 1, 0)T, (0, 0, l)T, (0, 0, 0)T, respectively, and with 
an interior point E which coincides with the gravity center, i.e., E = (~, ~, £)T. 

In the following, 9Jt denotes a fixed regular family o^ decomposition of Q (with 
a coefficient x) consistent with Fx and F2. Suppose, for simplicity, that the interior 
point E of any K e Q) e SOI is the gravity center. Let A, B, C, D be vertices of some 
K e Q) e 901, their coordinates being given by (3-3). Define an affme one-to-one 
mapping FK : K —> K by 

(6-1) FK(x) = BKx + d , xeK, 

where BK = (a — d, h — d, c — d) is a regular matrix as FK(A) = A, ..., FK(D) = D. 
Furthermore, FK(F) = F. Clearly, 

(6-2) \\BK\\ S 3 max (\\a - d||, ||b - d\\, \\c - rf||) S 3hK . 

Since it is known that l/3(K) = | |det BK\ (see e.g. [11]), it follows from (3-2) that 

(6-3) $ix3h3
K£±\detBK\. 

Denoting by BK the matrix of the algebraic adjoints of BK, the components of which 
can be evidently estimated by 2hK, we arrive at 

( 6 - 4 ) II B~K ' || = IT1—, 1 "*K 1 ^ — - - - 3 6/'* ^ x~ ^ ' • 
|det BK | 24TTX-'/^ 
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For T G T(K) define f e T(K) by 

(6-5) f(x) = B~1T(FK(X)) (BK')T , x e K . 

Further, for m = 0, 1, 2, . . . and a nonempty bounded domain Z a R3 with a Lip-
schitz boundary define the space 

jem(z) = [Hm(Z)]9 n r(z) 

with the norm ||.||,n,z- First, we shall approximate stresses t e 34?l(K) as in [9] for 
the two-dimensional problem: 

To any f e J-f *(K) assign II t G T# satisfying 

vTIItv dS = vTtv áš 
JS Js 

(6-6) | v,IIfvds= | vTfvdS VfieV* 

for any external face S of K with the outward unit normal v, and 

(6-7) ÍIT dx = I t dx . 

By Theorem 2.1 it follows that /It is uniquely determined by these requirements, 
since for any S there exists a unique linear vector function t§ e V$ such that 

A T Î vтf áš Vv є V§ 

and thus, IItv/S = ?§. 

Lemma 6.1. There exists a constant C such that 

| |m||0, J tgC||*| |1 >« -ire^'iK). 

Proof. By Theorem 2A there exists a linear operator & : R42 -> TK, which 

assigns to any vector a = (a 1 ? ..., a 4 2 ) T an element cp e TK such that 

$p(0) = ccp, p = 1, . . . , 4 2 , 

where the degrees of freedom <Pp are defined, for simplicity, by the outward unit 

normals vf of K. Thus, there exists a constant C% > 0 such that 

i - ||<p|0,« ^ ||«|| = (a? + ... + al6y» + (a>7 + ... + a\2)^ = 

= (£ £«<^HIIT2 + 
i = l / = 1 

ф dxl Vф є 7# . 

Since all norms in a finite-dimensional space are equivalent and since 

heV^dwhiM^W)1'2 

1=1 
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is the norm in Vs. for all external faces St cz K, i = 1, 2, 3, 4, we arrive at 

(6-8) l^ll 0,iř = C e.( ||<r^||o,** + ф dx 

where Ce does not depend on 0 e TK. Let t e Jf *(K). Applying v = I7tv/$e F§ 
to (6-6), we obtain by the Schwarz inequality 

(6~9) ll^wllo.s = | | ^ v | | 0 > s | | t v | | 0 3 . 

Referring to (6-7), (6-8) and (6-9), we see that 

(6-10) m II < Г 
0,Ќ = c e 

^ С,р|о,« + 

| /ÍÍ0| o.e* + 

t dx 

m áx < 

J>и) 
Using the trace theorem [7, 10] and the Holder inequality, we get 

||tf*||o.* = Ce(Ct||f | | l i i e + ^Uh(K)) ||*||0,*) S C\\t\\uR . • 

Lemma 6.2. There exists a constant C such that 

||* - tf*||0,* ^ C|t|w>£ Vt G j f " ( £ ) , m = 1, 2 . 

Proof. For m = 1,2 and i/l e Jf °(K) define the linear functional Em by 

(6-11) S"(t) - (t - Ht, i/>)o,x , * e -#""(#) . 

Applying the Schwarz inequality and Lemma 6.1, we obtain 

is-(t)i ^ 1* - 17t||0^ |̂ ||0tJt ^ (i + c) I*! lfit m0iR ^ 

= (i + c) | | t | | m ^ | | iA | | 0 , £ . 

Since Hep = 0 for 0 e [P i(K)]9 n T(K), we see that Em = 0 on [ P . ^ ^ K ) ] 9 n T(K), 
w? = 1,2. Using Bramble-Hilbert Lemma [2, 4, 8], we get 

\Zm(*)\ = C|f|m;K ||#||0>/. V t e ^ " ( X ) , 

which together with (6-11) proves the lemma. • 

Now, we formulate an analogous lemma for t e J f ^ K ) , K e Q) e SO?. Similarly 
as for II, we define the operator IIK : $£X(K) -> TK by 

(6-12) uт(т - Г/ т) и ds = 0 Vu Є Vs 

for any external face S of K with the normal n, and 

(6-13) 

It is worth noticing that F1KT does not depend on the size of /?. 
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Lemma 6.3. There exists a constant C such that for any tetrahedron K of any 

decomposition *3 e WH we have 

||T - / 7 K T| | 0 ; K £ Chm
K\x\miK VT e ^"'(K), m = 1, 2 . 

Proof. Using the previous notation, we assign to any v e Vs a vector v e V§ by 

v(s) = Blv(FK(s)), seS. 

It is easy to show that n = (BK
l)T v is the normal of the face S = FK(S). Then (6-5), 

(6-12) and (6-13) imply that 

vT(T - HKT) n ds = J vTB- ' BK(t - # TTKT) BT
K(BK

xy vjdet BK\ ds , 

0 = 

Therefore, 

(т - Пкx) áx = Bк(î - Пкx) Bт

к\det Bк\ ăx . 

ùт(x - Пкx)vdš = 0 , 

for any ve V§ and any external face S of K. Comparing this with (6-6) and (6-7), 
we get 

/ Ч 

Пkт = Пт (6-14) 

for any T G JTn(K), m - V 2, and the corresponding T e ffm(K). By (6-5), (6-14) 
and Lemma 6.2, 

(6-15) II K T L K S \\BK\\2 Idet B j 1 / 2 lit - nx\L,K S C\\BK\\2 Idet B, 1/2 
m,K 

for /?. = 1,2. It is known [3, 4] that any component Ttj e Hm(K) fulfils 

Чj° ГK\m,K <; HßJhldetß,!-1 /2 
c ij\m,K , m = 0, 1, 2, ..., 

where F# is defined by (6-1), "o" denotes the composition of the functions TU and F^. 
Therefore, by (6-5), 

(6-16) \x\mtK ^ 9\\BK'\\2 \\BK\\"' \dct BK\-1/2 

Referring to (6-15), (6-2) and (6-4), we see that 

\\T- nKT\\0,KS9C\\BK\\m + 2\\BK 

for m = 1, 2. H 

m = 0, 1,2, 

| T | m , R -= J ^ X П K | T | m , 

Theorem 6.1. There exists a constant C such that for any Q) e sA*c 

[Jcr - o@\\0 <; Chc\o\x if oeJtf^Q), 

\\o - a9\0 ^ Ch%\a\2 if o- e ^f 2(Q) , 

where o and o@ are the solution of the dual problem and the solution of its external 

approximation, respectively. 
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P r o o f . Let 9) e SM be arbi t rary. For T e 3tfl(Q) define UCJT G 7® so that 

n&TJK = nKT, Ke9. 

Using L e m m a 4.1 and (6-12) for each S e F(^), it is easy to see that I 7 ^ T G T$. By 
L e m m a 6.3 and (3-1) we obtain 

(6-17) ||T - fV||0 = (Z ||T - /7,TJi0.K)"2 ^ ( IC '^"Hi i K ) ' / 2 £ C'AS|t|m 
Ke@ Re® 

for T e JTW(.T2) and m = 1, 2. If x e ^ ' ^ j n E(f, a) then by Green's formula and 
(1-7), (6-12), (6-13), (4-3) we get that for any Ke9 

vтfdx T div T dr x = T . r,(v) áx — VTTV ás = 

and 

UKT . E(V) áx — vTnKTV ás = — vT div 7 7 K T d 
K J e K J K 

vTq ás = vTTv ds 
Js JS 

x VĽ Є Қ 

Ł > T Л Э T V d.s- VĽ є Қ-

where 5 <= F1? S e T(Q)). T h u s I J ^ T G F^(f, g). Using (6-17) for T = a a n d T h e o r e m 
5.2 we obta in 

||o" — o-a||o = ^ ( a ) II0" ~ ^ ^ l o = C/^ |G | m > m = -» 2 > • H 

7. Loo-ESTIMATE FOR THE EXTERNAL APPROXIMATION 

Given a closed d o m a i n 0 4= Z cz /M'3, we define the no rm 

oo , Z ess sup ||T(Z)|| , TG [L^Z)]9 , 

and set ||. ^ = ||. H ^ . For m = 0, 1, 2, . . . , put 

#W(Z) = [Cm(Z)]9 n T(Z), #(Z) = <^°(Z). 

N o t e tha t we can extend the domains of the opera to rs 17, 17K, U9 also by tensors 
of the spaces (€(K\ <€{K), <6(Q), respectively . 

Lemma 7 .1 . There is a constant c such that for any K e 9 e SM 

in^l^^clxf^ Vie *(/.). 
Proof. Since all norms in a finite-dimensional space are equivalent and since (6-10) 

holds also for t e ^(K), we have 

(7-1) ||l7t|U,K ^ cJfit | |o.K = '•cceM|x||0,-K + j \ x dx ! I 

where c does not depend on f e ^(K) . 
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Now, let K e __? e 9Jt be arbitrary. Similarly as in (6-14), we can prove that UKT — 
= fit for T e %(K) and the corresponding f e r 4 K ) . Thus, (6-5), (7-1), (6-2) and (6-4) 
yield 

\nKAU,R _ | |B„ | | 2 llťl^lU,* 
<r . II R I I 2 II n~) 

INI 2 ||l7íL,x __ -||-J oo.Ќ 

| 0 0 , _ _ 

Lemma 7.2. FOr a/ijl T G r^2(_7) t./Ore exists a constant cx such that 

(7-2) || T - n ^ m ^ O_4 V£? e 9)t . 

Proof. Let T e ^2(_1) and let K e 9 e W be arbitrary. Let x° - (x1? x^, x°)T e K 

be fixed. Then, for any x = (x l5 x2, x3)T e K Taylor's formula gives 

(7-3) T(X) - T(X°) + T'(X) + iT"(x) , 

where the matrices T'(X) and T"(X) have 

£ ^f(—} (*_ - *_) and i __!_%__) („. - *•) (x, - ,?) 
Jt=l OXfc fc,/=l oxkoxl 

ill the position (i,j), respectively, and 0,/x) = #/,-(x), /, / = 1, 2, 3, lie on the line 

segment 3cnx. Since HK(D = (D for cp e [Pi(K)]9 n T(K), we have from (7-3) 

(nKT) (X) = T(X°) + T(x) + ±(/7KT") (X) . 

We again use (7-3) to obtain by Lemma 7.1 and (3-1) that 

lit - l7xt|Lx = i | t " - llxt" oo,K = ~~T~~ T 

= -~~ ess SUP ( 1 ( 1 
2 zeíj \ i , _ = l V 1 ' ' 1 1 1 

ҘfluÍL) 
_ X* _ X , 

2\ 1/2 

for any K e Q> e 9JI. Hence, (7-2) is valid. • 

Theorem 7.1. L_*t 9JI be strongly regular. If o e tf2(Q), then 

Ik - 0*1« = 0(hlJ2) as ^ -+ 0, 9e Wl. 

Proof. Let K e Q) e 9J1 be arbitrary. Then by (6-5), (6-16), (6-2), (6-3) and (6-4) 
we obtain for T e TK that 

(7-4) ,,_ __ IN I 2 !|t|U,x __ ̂ ||Bx||2 

í'e||Bx||2 9HBX11|2 |det i-x|^ I / 2 ||T||0,X __ C '7^ 3 / 2 | T | | 0 > / C ; 

i (7-1) and d does not depend K e _? e 9Jt and T e _ 
— see (3-2) — we get 

ITII < V , / 7 ~ 3 / 2 I I T I I < / - / / ) " 3 / 2 I I T I I < ^ ' ^ ~ 3/2/ -3/2II || < t - 3 / 2 | | II 
|T | |oo ,K = C nK | | T | | 0 ,K = C QK \\T\\0,K =_ C * % | | T | | 0 , / - = CnQi | | T | | 0 

where ce is from (7-1) and d does not depend K e Q> e 9Jt and T e T^. Since 9Ji is 
strongly regular — see (3-2) — we get 
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for any T G TQ and K e 3 e s))l. Consequently, 

(7-5) IKHoo -S ^ 3 / 2 | | T | | 0 V T G T ^ . 

Now, by Theorem 6.1, (7-2) and (6-17) we have 

I k - O^lloo ^ | k ~ n9°\\ao + ch~3/2\\nS/0 - CJ^IIo S 

S cji% + ch~3/2(\\o - r/^O||o + || (7 - cr̂ Ho) ^ 

g c,*| + c*;3/2(c*||c7|2 + c4k|2) = o(4/2) 

for cr e %2(Q). B 

R em ark. We have chosen the assumption of strong regularity of the family 901, 
because we cannot estimate ||cr — (7^||0jK locally in terms of hK, but only globally 
in terms of h%. Furthermore, note that the L^-estimate of the analogous two-dimen­
sional problem will be even 0(h9), since we can bound the absolute value of the 
determinant of the affine mapping (from the reference triangle to an arbitrary triangle) 
from below in terms of h^-compare with (6-3) and (7-4). 

8. INTERNAL APPROXIMATION OF THE DUAL PROBLEM 

We introduce another type of the approximation of the dual problem which has 
been studied by Hlavacek [8] in the two-dimensional elasticity. 

Let f G E(f g) be fixed. Using the substitution T = T° + f, we can formulate the 
dual problem of Section 1 equivalently in the following way: 

Find o° which minimizes the functional J° : T -> R1 defined by 

J°(T°) = ia(T°, T°) - h(i°) + a(f, T°) , T° G T, 

over the set F(0, 0). (One easily sees that o° + f = o ) 

Definition. An internal approximation of the dual problem consists in finding o% 
which minimizes J° over the set F^(0, 0). The tensor o% + f is called the solution 
of the internal approximation. 

As in Section 5, we can show that o% exists and is unique. The previous problem is 
called the internal approximation, since F^(0, 0) cz F(0, 0) by Lemma 5.3, i.e., we 
approximate the set F(0, 0) internally. Obviously, J°(o°) S. J ° (<?%), while the ana­
logous inequality for the external approximation does not hold in the general case, 
since E@(f, g) is not a subset of £(f, g) in general. Using the above inequality and 
knowing, moreover, an approximation of the primary elasticity problem, we could 
obtain a posteriori error estimates and two-sided bounds of energy [7]. Since o — 
— (o% + f) = o° — o%, it is sufficient to study the convergence of the difference 
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Theorem 8.1. There exists a constant C independent od Q) e $tt such that 

||cr° - O° ||0 ^ Ch™\a°\m if G° e 2tfm(Q) , m - 1 , 2 . 

Proof, Ft can be proved as in Theorem 5.2 that 

(8-1) K - 4|jo ^ C(a) inf {||O° - T° ||0 | T° E £*(<>, 0)} . 

If (j° e jex(Q), then we know from the proof of Theorem 6.1 that n&a° e E^(0, 0). 
Thus, by (6-17), 

i!O°-4||o^c(a)||G°-/7X||o^c^K!m 

for tr0e Jt?m(Q), m = 1,2. • 

R e m a r k . A question arises about the convergence of the method when G° is not 
smooth enough. Thus let O° $ yfx(Q) and let q>° e E(0, 0) n M"l(Q). Then from (8-1), 

lk° ~ 4 | | o £ C(a) (|| G° ~ ^ ° | | 0 + inf{ | |^ 0 - r°j|0) | T° e E^(0,0)}) £ 

^ C ( a ) | ! O 0 - ^ 0 | | 0 + C ( a ) | | 9
0 - H ^ ° | | 0 . 

Since the second term is 0(hrj), in order to obtain convergence it is necessary to find 
cp° e E(0, 0) n J4?X(Q) sufficiently close to O° e E(0, 0) in the L2-norm. This can be 
done in the same way as for the plane problem in [8] (Theorem 4.3). where it is proved 
that the set E(0, 0) n [C°°(0)]4 is dense in E(0, 0) (with the topology of [L2(Q)f) 
provided certain assumptions on the domain Q c M2 are satisfied; e.g., if Ft = dQ, 
the author supposes Q to be starlike. 

Theorem 8.2. Let sJJl be strongly regular. Then for G° e %>2(Q), 

K - 4IU = 0(hxJ2) as h2->0, 9) eM. 

Proof. Referring to (7-5), (7-2), (6-17) and Theorem 8J , we see that 

y - 4IU = lk° - n^°L + ch-3
3l2\\n3o° - *%\0 s 

s c>4 + Ch7/!\y - i7,ff°||0 + ||«-° - 4||0) g 

=g c>4 + c^3/2(c74|<70|2 + cA||ff°|2) = o(4/2) • • 
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Souhrn 

METODA ROVNOVÁŽNÝCH PRVKŮ V TROJROZMĚRNÉ 
PRUŽNOSTI 

MICHAL KŘÍŽEK 

Je vyšetřován čtyřstěnný rovnovážný prvek napětí, který vznikl zobecněním 
trojúhelníkového rovnovážného prvku zavedeného Watwoodem a Hartzem [6]. 
Na dané polyedrické oblasti jsou studovány dva různé typy po částech lineární 
aproximace duální úlohy lineární pružnosti metodou konečných prvků. Pro oba typy 
je dokázána konvergence v L2-normě řádu 0{1i2) a v L^-normě řádu 0(hí/2) pro 
dostatečně hladké řešení. Za tím účelem je také dokázána existence silně regulárního 
systému rozkladů polyedru na čtyřstěny. 
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