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AN EQUILIBRIUM FINITE ELEMENT METHOD
IN THREE-DIMENSIONAL ELASTICITY

MicHAL KRiZEK

(Received April 4, 1980)

INTRODUCTION

The aim of the present paper is to generalize the triangular composite equilibrium
element — introduced by Watwood-Hartz [6] — for the three-dimensional space
and to demonstrate its applicability to solving the dual three-dimensional problem
of linear elasticity (a weak version of the Castigliano-Menabrea principle [7]).

The triangular composite equilibrium element has also been analyzed by Hlavdcek
[8] and by Johnson-Mercier [9]. Stress tensors (2 x 2) of this element are defined
on a triangle which is composed of three subtriangles (see Fig. 1). These tensors
are symmetric and linear on any subtriangle and along any contact of subtriangles

Fig. 1.

the continuity of the stress vector is demanded. We emphasize that a single (not
composed) triangle with linear stresses cannot be employed, since it has a small
number of independent parameters on the sides to balance an arbitrary loading
which is linear on any side (see [6, 8]).

In Section 2, we introduce the composite tetrahedral stress element. Then we
investigate two different types of a finite (piecewise linear) approximation of the dual
elasticity problem on a polyhedral domain. For both types we establish a priori
error estimates O(h?) in L,-norm and O(h'?) in L,-norm, provided the solution
is smooth enough. To obtain these estimates we also have to prove that for any
polyhedron there exists a strongly regular family of decompositions into tetrahedra.
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1. DUAL VARIATIONAL FORMULATION
OF THE LINEAR ELASTICITY PROBLEM

First, let us introduce some definitions and notations. Let Q # 0 be a bounded
domain with a Lipschitz boundary [7, 10] in #&” which is equipped with the Euclidean
norm ”” Note that a normal to the boundary ¢Q exists almost everywhere, the
outward unit normal being always denoted by v. Let u1, be the Lebesgue measure on R”.
Denote the space of real infinitely differentiable functions with a compact support
in Q by 2(Q). The Sobolev space of functions, the derivatives of which up to the
order m exist (in the sense of distributions) and are square-integrable in Q, is denoted
by H"(Q). The usual norm and semi-norm in H"(Q) are denoted by |.|,, o and |.|,, o,
respectively. The usual scalar product in L,(Q) = H%(Q) is denoted by (., .)o.0-
The space of real measurable functions which are essentially bounded (i.c., except
a set of measure zero) is denoted by L, (Q).

If Z is a closed domain, Z = Q, we shall write Z(Z), H"(Z), L(Z), || |2
instead of 2(Q), H"(?), L..(Q), || |01 |-|m.« for the sake of simplicity.

If 0 + 4 < R” is an open or closed domain, then C"(4) denotes the space of real
functions, the (C]assical) derivatives of which up to the order m are continuous in 4.
We write C(4) = C%(4). The space of polynomials of the order at most j defined
on the set 4 is denoted by P;(4) and we write

V,= [PI(A)]3.

All vectors will be column vectors. Since there is no danger of ambiguity, the scalar
product of u = (uy,...,u,)", v= (v, ...,0,) €[Ly(Q)]" is denoted by (., .)o.0
as in L,(Q) and we put

m,Z

)4
(“, U)o,o = (Z ("i~ Ui)é.rz)l/z :
i=1

Similarly, for v = (vy, ..., v,)7 € [H"(Q)]” we put

P
[mo)'? and  [o], 0 = (X |oifne)"?-

i=1

14
”U||,,,,g = (i; H”i

For simplicity, the dual elasticity problem will be formulated only on polyhedral
domains as we shall consider some finite element methods for its approximate solu-
tion later. Notice that in the mathematical literature there are many different defini-
tions of the polyhedron. Only the convex polyhedron is defined almost everywhere
in the same way as the intersection of a finite number of closed half-spaces in R?
which is bounded and has at least one interior point. In this paper we shall use the
following definition of the (generally non-convex) polyhedron.
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Definitior. A polyhedron is a nonempty closed bounded domain in R, the bound-
ary of which can be expressed as a finite union of polygons (where a polygon is
a nonempty closed bounded domain in R?, the boundary of which can be expressed
as a finite union of line segments).

This definition evidently generalizes that of the convex polyhedron since it is known
[1, 11] that the boundary of any convex polyhedron is composed of a finite number
of convex polygons.

YA

<9
]

Fig. 2.

From now on, let Q be the interior of the polyhedron on which the dual elasticity
problem will be formulated. Except for Section 3, we assume that Q has a Lipschitz
boundary, since this is assumed in the theory of elasticity. Fig. 2 shows a polyhedron
which has a non-Lipschitz boundary, since the boundary in any neighbourhood of the
points P, can be expressed only by a multivalued function in any coordinate system
(while any Lipschitz function is one-valued).

For simplicity, we put

(o= Joos -l =1{-lne- |'lm = |-|m.9~
Assume that the boundary dQ is divided into mutually disjoint parts I'g, I'y, ',
such that
(1-1) rour,ur, =0oQ,

where I’y is the union of a finite number of line segments and I'y, I', are open in 02,
ie., for any xeI';, i = 1,2, there exists an open sphere & < > such that xe &
and S N 0Q < I';.

Henceforth, let a body force [ e [L,()]°, a boundary force (load) g € [L,(I'y)]*
and a displacement u, € [H'(Q)]* be given. In the case I', = 0, we always assume
that the equilibrium conditions for forces f, g and their moments are satisfied, ie.,

(1-2) jfdx+J gds =0, Jxxfdx+Jx><gds=0.
2 on 0 a2

We define the space of symmetric 3 x 3 stress tensors on the open or closed
domain Z < R® as

T(Z) = {te[Ly(2)]° |t ="}, T=T(Q),
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and the set of statically admissible stresses as

(1-3) E(f.g) = {re T’j 1) dx —j o dx +J vTgdsVee V),
(9 r

1

where
V={ve[H'(Q 3[1—0 on I}

is the space of virtual displacements,

v oo\ T
i)
oX CX

-

is the infinitesimal strain tensor, dv/dx is the 3 x 3 matrix of the first partial deriva-
tives of v, and
3
(1-4) toe(v) = tr(tTo(v)) = Y 1, ev).
ij=1
Further, we introduce the generalized linear inverse Hook’s law for a non-homoge-
neous and anisotropic material of the clastic body:

3
(gij = Z AijAITI\i)*
k(=1
where we assume that 4 = (4,;);x.1=1 € [Lo(2)]*",

A=A Aklij

jikt

and that there exists a constant C, > 0 such that

(1-5) ¢ . (A(x). @) = CAH‘/’”Z Vo = ¢ e R°

holds almost everywhere in Q.

Definition. The dual problem of the linear elasticity consists in finding ¢ which
minimizes the functional (of the complementary energy) J : T — R defined by

(1-6) J(r) = }L; (A7) dx - 'Lr e(ug) dx = Ya(r,7) — b(r), e T,

over the set E(f, g)-

It is known [4, 5, 7] that this problem has a unique solution, since the symmetric
bilinear form a(., .) is T-elliptic by (1-5) and since E(f, g) is nonempty, closed
in T and convex. (Furthermore, ¢(u) = A . ¢, where u is the solution of the primary
problem.)

Definition. Let [ € [Ly(Z)]*, where 0 & Z < R* is a closed or open domain with
a Lipschitz boundary. If
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holds for v € T(Z), then we say that the divergence of the tensor T exists in the sense
of distributions in Z and we define divt = —f in [L,(Z)]°.

Note that the first generalized derivatives of 7 need not exist. But, if € T(Z) N
N [H'(Z)]°, then it is easy to show that

By the above definition, t € E(/, g) if and only if
(1-7) divt+ /=0 in [Ly(Q)], =g in [Ly(I))],

where v is the outward unit normal to I'y. (This easily follows by using the linear
functional — see e.g. [5] —

(v, w) = j (t.e(v) + v divr)dx, we[H*2Q)]?,
Q

which does not depend on the extension v e [ H'(Q)]? of the trace w = v/0Q and which
is bounded on [H'3(Q)]*.)

In Section 4 we shall construct spaces of finite elements of stresses such that the
divergence of these elements will exist in the sense of distributions in Q. However,
before that we present two important sections.

2. THE TETRAHEDRAL COMPOSITE STRESS ELEMENT

Let K be an arbitrary tetrahedron with vertices 4, B, C, D and let E be an arbitrary
fixed point of the interior of K. Divide K into four tetrahedra BCDE, ACDE, ABDE,
ABCE and denote them by Ky, K,, K3, K,, respectively (see Fig. 3). We call these
tetrahedra the blocks of the tetrahedron K. Now, we have 10 triangular faces in this
composed tetrahedron K: 4 external faces BCD, ACD, ABD, ABC and 6 faces
ABE, ACE, ADE, BCE, BDE, CDE, which we call internal faces of the composed
tetrahedron K. By a normal to an external or internal face S we shall understand
a normal to the plane which contains S. Thus, we can consider a normal to S also
at the boundary points of S.

Now, we define an auxiliary space

T = {re T(K) | 1/K;e [P,(K)]°, i = 1,2,3,4} .

If Te Ty, then we denote the linear extension of I/K,-, i=1,2,3,4, to the whole
space R by 1;, i.e., 1€ [P (R*)]°.

Definition. Let € Ty. Then the stress vector tn is said to be continuous at the
internal faces of K, if for any internal fuce S common to two different blocks
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K, K; 1 2i<j<4, wehave
(2-1) n=1tn on S,
where n is a normal to S.
Next, we define the subspace Ty of Ty as
Ty = {1e Tk [ 7 is continuous at the internal faces of K} .

The main purpose of this section is to show (similarly as in [9] for the triangular
element) that the stress tensor 7€ Ty is uniquely determined by:

(i) the values of tn at three points, not lying in one straight line, of each external
face of K, and
(i) fxrdx.

142

Definition. A tetrahedral composite finite stress element is a triple (K, Tk, { L S

where &, are functionals defined on Ty in the following manner:

For any external face S; = K;n 0K, i = 1,2, 3,4, select a normal n; and three
points M;;€S;, j = 1,2,3, not lying in one straight line. Then for te Ty put
(v) Doicryra-1yu(t) = (TdMy) m) for i=1,2,34 jk=1723.

(where (), denotes the k-th component of a vector from R*),

(YY) . 4)36+1(T) = J tpdx for 1=1,23,
K

Py0(7) = J;ﬁz dx, (1)“(1) = JKT” dx, ‘1’42(T) = J‘Kfzs dx.

The functionals @y, ..., P4, are called the degrees of freedom of the tetrahedral
composite finite stress element.

The motives for this definition will be obvious from the proof of Theorem 2.1,

where we show that {@,}72 is a basis of the dual space [ Tx]".

Theorem 2.1. Tlie dimension of space Ty is 42 and for arbitrary real numbers
Oy, ..., Oy, there exists a unique tensor v € Ty such that

(2-2) P (t)=ua, for p=1,...,42
(i.e., the set {@,}32 | is Ty-unisolvent — see [4], p. 78).

Proof is based on the following seven lemmas. We remark that the unisolvency
of the triangular composite stress element is proved in [9]. However, the proof
is based on the existence of Airy’s function, the analogue of which in the three-dimen-
sional space (Maxwell's or Morera’s stress functions) has a too complicated shape
for our purpose. Thercfore, we have chosen a way which leans only in the geometrical
properties of tetrahedra and on basic results of linear algebra.
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Lemma 2.1. Given a composed tetrahedron K, there exist such normals ny, n,, ny €
€ R? of the external faces BCD, ACD, ABD, respectively, that n; — ny, n, — ns,
ny — ny are normals of the internal faces CDE, ADE, BDE, respectively.

Proof. Let v,, v,, v; € R be the outward unit normals of the faces BCD, ACD,
ABD, respectively, of the tetrahedron ABCD. Put n; = v,. Since the planes BCD,
CDE, ACD contain the straight line CD, their normal vectors are linearly dependent.

D

Fig. 3.

Hence, there exists a unique constant e R' such that n, — fv, is the normal of
CDE and we put n, = fiv,. By investigating analogously the planes BCD, BDE,
ABD we find that there exists a unique y e R' such that yv; — n, is the normal
of BDE. Therefore, we put ny = yv;.

To complete the proof, we must show that i, — nyis the normal of ADE. The plane
ADE has a common straight line, DE, with the planes CDE (with the normal n; — n,)
and BDE (with the normal ny; — n;). Hence, there exists a unique « e R' such that

(2-3) a(ny, — ny) — (ny — ny)

is the normal of ADE. However, the plane ADE has a common straight line, 4D,
with ACD (with the normal n,) and ABD (with the normal ny). Therefore, the normal
of ADE can be expressed as a linear combination of only n, and n; (independently
of n;). Thus, o = —1in (2-3) and n, — nj is the normal of ADE. ®

Lemma 2.2. Let n,, n,, ny € R* be linearly independent vectors and let P, P,, P,
be symmetric 3 x 3 matrices such that

P,ny = P,n, = Pyny =0,
P,n, = —P,n,, P,ny= —Pin,, Pyn = —Pny.
Then Py = P, = Py = 0.
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Proof. We show that lliTPlrz_, = 0foranyi,j, | £j =i =< 3, since then certainly
P, = 0. Obviously,
nPin, =0 for i=1273.

Further, the assumptions imply

T T
nyPny, = —n3P.n, = —niPyn, =0,
T T T
nyPny = —n3Ping = —nPyny; =0.
Finally,
T T T T T T
nyPny, = —n3Pyn, = —nl Pyny = ny Pyn, = nyPyny = —nyPiny = —nPn,,

which yields n3 P n, = 0. Thus, P, = 0. Similarly, it can be proved that P, = P, = 0.
L

Lemma 2.3. If t€ Ty and tn = 0 on 0K, then t = 0 on 0K. (In detail: if Tn; = 0
on S; = K;noK,i=1,2.3,4, where n; is an arbitrary normal to S;, then t; = 0
on S; for i=1,23,4)

Proof. Let t € Ty and let ny, n,, ny be the normals from Lemma 2.1, which are
evidently linearly independent. Since the external faces S,, S,, S; contain the vertex
D, we have from the assumptions

(2-4) 7,(D)ny = 15(D) n, = 14(D)ny = 0.

The vectors n; — n,, n, — ny, ny — ny are normals of the three internal faces,
which contain the vertex D. From the continuity of the stress vector at the internal
faces, we get

(D) (n, — ny) = (D) (n, — n,),

(D) (n, — n3) = w3(D) (n, — n3),

13(D) (ny — ny) = (D) (ns — ny).
Then by (2-4)

1 (D)n, = —1(D)ny, 1,(D)ny = —15(D)ny. t4(D)ny = —7,(D) ny.
Applying Lemma 2.2 to the matrices P; = t,(D) for i = 1,2, 3, we find
(2-5) (D)=0, i=1273.

In the same way we find that

(2-6) t(A) =0, i=234,
t(B) =0, i=134,
(C)=0, i=124.

Hence, the linearity of 7, implies that 1, = Oon §;, i =1,2,3,4. =



Lemma 2.4. Given a composed ietrahedron K, there exist such normals i, it,, iz €
€ R* of the internal faces BCE, ACE, ABE, respectively, thai it; — iy, iy — i3,
ity — ny are normals of the internal faces CDE, ADE, ABE, respectively.

Proof is identical with that of Lemma 2.1 after interchanging the letters D and E.
"

Lemma 2.5. If 1€ Ty, then
(2'7) Tl(E) = 1,(E) = Ts(E) = 74(E)-

Proof. Let te Ty and let i1y, i1y, i15 be the normals from Lemma 2.4, which are
linecarly independent. Since all internal faces contain the point E, we have from
(2-1) that

t(E)iy = t(EYiiy . w(E)is = (E)ii,, 1i(E) ity = 1,(E) iy,
T-.(E) (’71 — i) = Tz(E) (7, = i),
() (7, — i1y) = w(E) (i — iia) .
(E) (7, — ity) = o, (E) (i; — y).

Setting P; = t,(E) — t4(E) for i = 1,2,3. we can transform the above system
into the form
Piiy = Py = Py = 0,

Pi(iy = iiy) = Py(it, — i1).

Py(ity - ii3) = Psy(i1, — ii3),

Py(iiy — i1y) = Py(i; — i1y).
Now, from Lemma 2.2 we see that P, = P, = P, =0 8

Let us note that lemmas analogous to Lemma 2.3 and 2.5 could be easily proved
also for the triangular composite stress element. Finally, we shall use two following
well-known and simple lemmas for the proot of Theorem 2.1.

Lemma 2.6. Let Y be a linear space of a finite dimension m and let A, p = 1,...,r,
r < m, be linear functionals on Y. Then the dimension of the spuace

eY/A(y)=0,p=1 .71}

is at least m — r and the dimension of this space is equal to m — r if and only
if the functionals A, are linearly independent. ®

Lemma 2.7. Let K' be an arbitrary tetrahedron with vertices A, A,, A3, Ay and
a gravity center G. Then

[ pax = 2atk) X 0t = ti) )
for any pe[P,(K')|" (m integer). B
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Proof of Theorem 2.1. First we show that dim Ty < 42. Let 1€ Ty and let
(P,,(r) =0 for any p = 1,...,42. Then obviously tn = 0 on ¢K and [, tdx = 0.
From the linearity of t on any block, from Lemma 2.7 and (2-5), (2-6). (2-7) it and
follows that

0 =JKT(1.\ Z r dx = /l;([\ Y (t(B) + 1,(C) + 7,(D) + 1,(E)) +

i=1

.+‘1t,u( 4)(r;/1 + 14(B) + 1,(C) + 14(E)) »42‘/:‘(K)r(

e, t(E) = 0 for i = 1,2,3,4. Thus, we see that t; attains the zero value at all
vertices of any block K, i = 1, 2, 3, 4. Hence, © = 0 on the whole K and by Lemma

E4

2.6 we have
(2-8) 0 = dim {re T [ D (1) =0, p=1,..,42} 2 dim Ty — 42.

Further we show that dim T = 42. Since a symmetric stress tensor has six inde-
pendent components and since dim P,(K,) = 4 for i = 1,2,3,4, we immediately
see that dim Ty = 6 x 4 x 4 = 96. Let it bz a normal of the internal face S = K, n
N K, and let N € S. For te Ty we define functionals ¥,, k = 1,2, 3, by

Yi7) = (ri(N) T — 1,(N) 7).,
where, as above,_(.)k denotes the k-th component of a vector from R3. If we select
from any of the six internal faces three points not lying in one straight line, we can
analogously define 6 x 3 x 3 = 54 linear functionals ¥,, ..., ¥s, on the space
T,. It easily follows that all these functionals vanish if and only if 7€ Ty, i.c., if the
stress vector is continuous at all internal faces of K (see (2-1)). Thus, by Lemma 2.6,

dim Ty = dim {re Ty | V(1) = 0, g = 1.....,54} 2 96 — 54 = 42,
and together with (2-8) this gives dim Ty = 42.

Using Lemma 2.6 again, we observe that the functionals @, are linearly independent,
since now (2—‘%) turns to equality. The cxistence and unicity of the tensor 7€ Ty
satisfying (2-2) are now obvious. ®

3. EXISTENCE OF A STRONGLY REGULAR FAMILY OF DECOMPOSITIONS
OF A POLYHEDRON INTO TETRAHEDRA

The results of this section will be used not only to construct the space of the finite
elements, but also mainly for the convergence proofs of Sections 6, 7 and 8.

Definition. A finite set of tetrahedra is said to be a decomposition of the polyhedron
Q into tetrahedra if
(i) the union of all these tetrahedra is Q,
(ii) the interiors of these tetrahedra are mutually disjoint,
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Theerem 3.1. For any polyhedron there exists a decomposition into tetrahedra.

The proof is based on an auxiliary lemma.

Lemma 3.1. For any polyhedron Q there exist convex polyhedra Q,, ..., Q, such
that

(y) theunionof all @, p=1,...,r, is Q,
(yy) the interiors of these convex polyhedra are mutually disjoint,
(yyy) any face of any polyhedron 5_2,,, pE {1, e r}, is either a face of another
polyhedron Q,, q + p, or a subset of the boundary 0Q.

Proof of Lemma 3.1. Let Q be an arbitrary polyhedr&n and let P', ..., P¥ be poly-
gons the union of which is #Q. Let R, ..., R* be planes such that P’ R‘ i=1,...

., k. Finally, let Q,, ..., Q, = R> be all components of the set O\ U R (1 e., the
i=1
components which arise by “cutting” Q by the planes RY). We show that 5_2,,, p=1..
.., r, are the convex polyhedra sought (their number is finite, because k planes
divide the space R* into 2* parts at most).
k
Since 0Q = U R', it follows that
=l ko k
O\ UR = Q\ UR'.
i=1 i=1
k

This set is open since Q is open and {J R’ is closed, i.c., Q, are open connected sets.
i=1

Let pe{l,....r} be fixed. Any plane R', i = 1, ..., k, splits the space R* into two
halfspaces. Denotmg by Q' that closed halfspace wnh the boundary plane R’ which
contains Qp, it is easy to show

k
=NQ".
i=1
Hence, ﬁ,, is a convex polyhedron, since the set Q,, is bounded and contains at least

one interior point.
r k
Using the definition formula U @, = @\ Y R', we find that the condition (y)
p=1 i=1
holds. Since any two components Q,, Q,, p # ¢, are separated by at least one plane
R, (yy) holds. It remains to verify (yyy).
Let x be an interior point of a face S of the convex polyhedron @, and let x € 0Q,,
q # p. Suppose, for the moment, that x lies on an edge of the convex polyhedron Q.
Then x must lic in at least two diflerent planes R, R', s, te {1, ..., k}, But this is
a contradiction, since x is an interior point of S. Hence, x is also an interior point
of a face S’ of the polyhedron @, and we deduce that S and S’ have common interior
points, i.e., S = S'. If the face S of QI, does not coincide with a face of any other
polyhedron @, g # p, then it is easy to see that S < ¢Q. =
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Proof of Theorem 3.1. Let @ = [ be an arbitrary polyhedron and let Q,, ...
..., Q. be the convex polyhedra from Lemma 3.1. We shall divide all these convex
polyhedra into tetrahedra in the way described in [11]. Let pe {1, ..., r} be arbitrary.
As has been said, all faces of the convex polyhedron @, are convex polygons. Denoting
by By. ..., B; (for instance, counter-clockwise) the vertices of any face we can divide
this face into the triangles B,B,B;, B{B;B,, ..., B{B;_B;. Let {S}}V/2, be the sct
of all triangles which are obtained in this way on the surface of the polyhedron Q,
(see Fig. 4). In addition, we require that common faces of two convex polyhedra

Fig. 4.

(ie., faces S < Q,, S" = @, p = ¢, such that S = ') be divided into triangles
“in the same manner”. Let 4, be an arbitrary interior point of the polyhedron Q,.
The convex hull K of the triangle S, and the point A, is a tetrahedron. Introduce
the set

g = {K’,’, \ p=1,...rnu=1,.., m,,} .

Utilizing the conditions (y). (yy)q (yyy) from Lemma 3.1 as well as the fact that
a possible common face of two convex polyhedra Q,, Q, p # ¢, is divided into
triangles in the same manner, it is easy to show that the finite set & satisfies (l) (ii),
(iii). m

Denote by fix (= diam K) the length of the largest edge of a tetrahedron K. To any
decomposition & if the polyhedron Q into tetrahedra we assign the real number
(3-1) h, = max hy .

Ke2

The number h,; is called the norm of the decomposition &.

Definition. A set of decompositions M of the polyhedron Q into tetrahedra is called
a family decompositions if for any &> 0 there exists a decomposition 2 &M
such that h, < e.
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Definition. A family of decompositions M of the polyhedron Q into tetrahedra
is said 1o be regular (strongly regular) if there exists a constant % > 0 such that
for any decomposition & € M and for any tetrahedron K € 2 there exists a sphere
Sy with a radius gy such that &y < K and

(3-2) xhy < 0k (xhy < 0g) .

(i) any fuce of any tetrahedron in the decomposition is either a face of another
tetrahedron in the decomposition, or a subset of the boundary ¢Q.

The constant » is said to be coefficient of the regular (strongly regular) family 9.

Obviously, any strongly regular family is regular. Note that a strongly regular
family of triangulations of a polygon (the definition is analogous) is easy to obtain
due to the fact that any triangle in the triangulation is divided by midlines into four
coinciding triangles, which are similar to the original one. In three-dimensional space
the situation is considerably more complicated, since it may not be possible to divide
any tetrahedron into more coinciding tetrahedra which would be similar to the
original tetrahedron.

Theorem 3.2. For any polyhedron there exists a strongly regular family of de-
compositions into tetrahedra.

Proof will be composed of three parts — a), b}, ¢).

a) First, we prove the theorem for the simplest polyhedron — tetrahedron, which
will be particularly selected. So let @ = K, where K is the tetrahedron with the verti-
ces A, B, C, D having the coordinates (4, 0,0)%, (=4,0,0)", (0,4, H)7, (0, =4, 1),
respectively (see Fig. 5). The length of the opposite edges AB and CD is equal to 1
and the length of all other edges is \/3/2. Denote by M, M,, My, M, Ms, M the
midpoints of 4B, AC, AD, BC, BD, CD, respectively and divide the tetrahedron K
into cight tetrahedra (see Fig. 5):

AR, B, BSINIET, . CRIGNLAT,, DRIGRE, s,
YOy I B I v S0 Iy SR O 00 20, S v O v O 3 v

It is easily seen that all these tetrahedra form a decomposition of K. We denote
by Z, this decomposition and put Z, = {K}. The length of the edge M Mg is }
since the coordinates of the end points are (0,0, 0)T, (0,0, 1)". The length of all
the edges which are the midlines of the external faces of K and which are parallel
with AB or CD is | as weel. Therefore, the length of the edges

AN, BN |, M, M4, M3Ms, CM, DM g, M,M, M, M, 8 Mg

is equal to 1 and for any tetrahedron of &, precisely two of these edges arc opposite.
The length of all remaining edges of the tetrahedra of &, is \/3/44 Hence, all tetra-
hedra of &, are coincident and similar to the original tetrahedron K. If § is the
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Fig. §.

radius of the inscribed sphere of K then the radius of the inscribed spherc of any
tetrahedron of &, is evidently 4. Any tetrahedron of 7, can be divided in the same
way into eight coincident tetrahedra similar to K again and we obtain the next
decomposition &,. Repeating this process to infinity, we get the family of decom-
positions { 57,,,},,";0, since the norm of &, is 27™. Morcover, this family is strongly
regular since the corresponding coefficient % can be chosen as % = 27"3/27" = 4.

b) Consider @ = K, where K is an arbitrary tetrahedron with vertices 4. B, C, D,
the coordinates of which are

(3-3) a=(ayaya3)", b=(b.byby)T. ¢=(cpcyey)",
d=(dy, dy dy)".
We introduce an affine one-to-onec mapping I : K — K given by

(3-4) F(X)=0x+4q, ek,
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where ¢ = (a + b)2and Q ={a — b,¢c —d,c +d —a— b)is a regular matrix
as F( 4) = F(D) D. This mapping transforms the edges of K onto the corres-
ponding edges of K, the midlines of the faces of K onto the midlines of the correspond-
ing faces of K and so on. Therefore, for m = 0, 1, 2, ... the set

_/Hl = (F(K)I KIGJ }
is also a decomposition of K. Let e,, be the largest edge of all tetrahedra from Z,,,

its length being A, , and let h, be the length of the corresponding edge &, =
= F~'(e,)- According to (3-4) and part a) we have

(3-5) h, < 0|k, =|Q27", m=0,1,2,..
Thus, {Z,,}m=0o is a family of decompositions of K.
Denote by & the inscribed sphere of K, i.c.,
I ={%[|x-%| =} =K,

where ¥, = (0, 0, ;)T is the centre. Then
F#)=6={x]]07'(x—q) = %] =8} = K

is the cllipsoid with the centre x, = Q™ 'q + X, which is inscribed in K. Denote by ¢
the length of the shortest semi-axis of & and let % be the sphere with the centre x,
and the radius ¢. Then & = & < K. According to a), the radius of all the inscribed
spheres of the tetrahcdrdl from @,, is 27"3. Hence, the mapping F transforms all
these spheres onto ellipsoids that are Comc1d1ng and similar to &. These ellipsoids
will be inscribed in the corresponding tetrahedra from 2,, and, obviously, the length
of their shortest semi-axes will be 27 ™¢. One immediately sees that for any K' € &,,
there Pxists a sphere %" with the radius 27" such that ¥’ < K’. Consequently, the
family {2,,} is strongly regular and since (3- 5) implies
27 ™M < 27 "o o

‘m 5‘

b, —20] o]
the corresponding coefficient x can be chosen as x = o/ Q|
c) Let Q be an arbitrary polyhedron and let Z be an arbitrary decomposition
of @ into tetrahedra. According to b) a strongly regular family {2,,(K)}_, with
a coefficient x corresponds to any K € Z. Setting
9,=U 2,K), m=0,1,2,..,
Ke9
we can easily verify that &,, is a decomposition of Q. The norm of &,, is evidently

max hy, . Thus, {Z,,} is a family of decompositions of &, since according to b)

KeZ

me 0
hy,xy—=0 as m— o

for any K from the finite set Z. This family is strongly regular, since the corresponding

coefficient % can be chosen as ¥ = min x,. &
Ke2
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Now, we investigate the question whether there exists a decomposition of Q such
that the parts I'y, I', satisfying (1-1} are covered by whole faces of tetrahedra of the

decomposition (see Fig. 6).
. _//\ A\

Fig. 6.

Definition. Let the parts I'y, I'y, I'y of the boundary of Q satisfy (1-1). Then
a decomposition @ of Q is said to be consistent with I'; and I', if the interior of any
Jace of any K € @ is disjoint with I'y,.

Theorem 3.3. Let the parts o, I'y, T, of the boundary of @ satisfy (1-1). Then there
exists a strongly regular family of decompositions of Q (into tetrahedra) consistent
with I'y and T,.

Proof. Let Piand R, i = 1, ..., k, be the polygons and the planes, respectively,
from the proof of Lemma 3.1. Let I'y =&  (the case I'y = 0 was proved in Theorem
3.2) and let p', ..., p' be the line segments the union of which is I'y. Evidently, for
any p’,j = 1, ..., I, there exists a plane R¥, s; € {1, ..., k} such that p’ = R*. Denote

by R¥*J the plane such that p/ = R¥"/, which is perpendicular to R¥. Let Q,, ..., Q,
' k+1
be all components of the set @\ |J R’. Now, proceeding as in the proofs of Lemma
i=1
3.1, Theorems 3.1 and 3.2, we obtain the strongly regular family {Z,,}5-, of de-
compositions of Q. Since any line segment p/, j = 1,..., [, is included in at least
two different planes R, R', 1 < s,t < k + [, the interior of any face of any K e &
m=0,1,2,...,is disjoint with I',. =

m»

4. FINITE ELEMENT SPACES

Let & be an arbitrary decomposition of Q into tetrahedra. We define the finite
element spaces corresponding to the decomposition & similarly as in [9] The space
of the finite elements of stresses is the space

T, ={reT,|divre[L,(2)]}.
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where
T, ={teT|t1/KeTy Ke2},

<

and the space of finite elements of displacements is
Vg = {ve[L,(Q] I v/Ke Vg, Ke2}.

Obviously. T, < T, but the analogous inclusion between ¥V, and ¥ does not hold
in general. Now, we describe the character of tensors of Ty.

Definition. Let te T,, Then the stress vector tn is said to be continuous at the
external faces of the tetrahedra of @, if for any face S common to two different
tetrahedra K, K' € & we have

(4-1) Tho=71Tn on §,
where n is a normal to S, t; and 1 are the linear extensions of t/K; and v'[Kj],

respectively, to the whole space R* and K; = K, K; = K’ are blocks such that
S=K;,nKj

Lemma 4.1. Let te T,. Then te T, if and only if tn is continuous at the external
faces of the tetrahedra of 2.

Proof. Let te T, and let S = K;n K}, K; c K,K; c K', K,K'e 2, K * K'.
Using Green’s theorem, we have for ve [2(K; U K))]®

J (t.e(v) + ¢T divr)dy = J vtvds = j Tty ds
K; Ki S

i

jK ‘(r &(v) + 0" divt)dx = L_,UTTV ds = LUT Tjv;ds,

J

where v; = —vj is the unit normal to S (outward to K,-). Since the divergence of

exists in the sense of distributions also on the subset K; U K Q, summing both
the above identities gives

0= J v (ty — Tv)ds Voe[2(K, VK))]*,
s

i.c., particularly for all v e [#(S)]*. Thus, t,v; — Tjv; = O on S.

Conversely, let T e T, and let tn be continuous at the external faces. Since div 7
exists in any block,

(4-2) J t.¢(v)dx = -[ vty ds — j vTdividx Ve [2(Q)].
Ki K K;

Define fe [L,(2)] by
JK,= —divt VK,c K, i=1,234, VKea.
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Summing (4-2) forall i = 1,2, 3, 4and all K € 7, we see that

J. T.oe(v)dy =Y Y ([ vty ds +f va'dx> = J oTfdx Vee [2(2)]?,
Q Kezr KicK \, K: Q

K
since (2-1) and (4-1) hold. Thus, —f is the divergence of 7 in the sense of distributions
on the whole QandteT,. ®
Now, one sces that Green’s formula

(4-3) f 7. ¢(v) dx + J. oT divtdx = J vtvds, ve Vg,
K K ¢

¢K

i

holds also for 7 & Ty (the components of which are not from H'(K)).
We denote by f(fﬁ) the set of all external faces of all K e &, i.e.,
I(2) = {S = R*| S is an external face of K € 2} .
It is clear from Section 2 that T € T, is uniquely determined by:
(i)  the values of tn at three points, not lying in one straight line, of each S e F(@),
(i) [xtdx for cach Ke 2.

Analogously as in Section 2, we could define the degrees of freedom @', ..., @
of the space Ty, where r = dim T, = 9 card I'(Z) + 6 card 2. Now, we show
that the definite element spaces of stresses and displacements have the so-called
equilibrium property (see [9]).

r

Lemma 4.2. If 1€ T, and (v, div 1), = 0 for all ve V,, then divt = 0in [Ly(Q)]’.

Proof. Let K e & be arbitrary and let G;, i = 1, 2, 3,4, be the gravity centers
of the corresponding blocks K;. Clearly, G,G,G;G, cannot be a degenerate tetra-
hedron, since it is similar to the tetrahedron G;G5,G3G}, where G| are the gravity
centers of the faces S; = K; n 0K, and G;G5G3Gy is similar to the mirror image
of K. Thus, we choose v, € Vi, j = 1,2, 3,4,k = 1, 2, 3, such that zajk/K' = 0 for any
K e 2, K’ # K, and we can define v, linear on K so that

0(G;) = (8140 021 03)" s v(G)) = (0,0,0)7 for [ +j, le{l, 23,4},

where 0, is Kronecker’s symbol. Using Lemma 2.7, we obtain
4 4
0= J U}-,‘. divtdx =Y J 1}}',( divrdx =Y uy(K)) L’ka(Gi) divt;, =
2 i=1 K; i=1 -

= 113(K;) v}(G;) div 1; = 13(K;) (div 7)),
where (div rj),\ denotes the k-th component of the constant vector div t;. Therefore,
divt, = (0,0.0)T for j =1,2,3,4. ®

5. EXTERNAL APPROXIMATION OF THE DUAL PROBLEM

As in Section 1, let e [Ly(Q)]*, g € [L,(I'\)]* and let (1-2) hold if I', = 0. For
an arbitrary decomposition & of Q consistent with I'; and I', define the set of statically
admissible approximations of stresses (cf. (1-7))
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E,/,g9) = {re T, J o' divtdx = —J Tfdx YeeV,,
. Q e}

J'UTrvds:-[ngds Yoe Vg, VSel(2), SCF,}.
s s

Definition. An external approximation of the dual problem (corresponding
to the decomposition @) consists in finding o, which mininmizes the functional

(1-6) over the set E,(f, g).
Theorem 5.1. There exists a unique solution o of the external approximation

of the dual problem.

The proof is based on two auxiliary lemmas.

Lemma 5.1. Let K€ &, § € [L,(0K)]® and let

(5-1) J‘wadx +J wigds =0 VYwe Wy = {ve VK[ (v) =
K 7

K
(i-e., the equilibrium conditions for the forces f, § and their moments are satisfied
on K). Then there a unique te Ty such that

(5-2) f v divrdx = —J’ Tfdx Ve Vg,
K K

(5-3) f vTov ds »—J‘ vTg ds Vve Vg
s s

and for all external faces S of K with the outward unit normal v.

Proof. Existence. By Riesz Theorem, for any external face S of K there exists

a unique t € Vg such that

(5-4) J. vt ds =J. vTgds Yoe V.
s s

We choose t e T such that (see Section 2)

(i) wv =1ton K,

(ii) Jerdx =3 ([(xfT + /xT) dx + [ox(xg" + gxT)ds) .
Then evidently (5-3) holds. Let v e Vy be arbitrary and let
(5-5) v=u+w, ueUy, weW,

where Uy is the orthocomplement of Wy in V. Using (1 4) and the symmetry of the
constant tensor 6(1/) we see that

Lr cg(v) dx = J 2 e(u) dx =4 (L(xﬂ + f/xT)dx + Lk(ng + gx") ds> co(u) =
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é

=tr (f ufTdx +J ug’ ds> = [lled.\' 4—'[ u'gds.
K oK JK oK

Hence, (4-3), (5-1), (5-4) and (5-5) imply

j ot divrdy = — J' T.¢(v) dx + f uTtvds + f witvds =
K K K

- [t eman + [ - Gamyas = o ([ sty o + [ stonomas) -

cK 2K

= ~—J~ ufdx —~J' u'gds + f u'g ds —f wifdx = —j vTfdx.
K K K K K

Unicity. Let ¢/, " e Ty satisfy (5-2) and (5-3). By (4-3), we have [((¢' —17).
.e(v)dx = 0 for any ve V. Thus, [y (v — 1")dx =0 and since (¢ — 1")v =
ondK,wegett —1"=0onK. =

Lemma 5.2. The set Eg(f, g) is nonempty.

Proof. Let us number the tetrahedra of & in this manner: Let K' € & be arbitrary.
Successively, we denote by K/ € 2, j = 2, ..., m (: card {Z), an arbitrary tetrahedron
which is different from K', ..., K~! and which has a common face with at least
one tetrahedron K', ..., K/~ . Let

k
F=UK', k=1,...,m.
i=1

We shall define a certain extension g* of g to all faces S e I'(2) in such a way that
the equilibrium conditions for the forces f, g* and their moments will be satisfied
on any £, which is evidently a connected set (a polyhedron).

First, we define g* on 6Q" = 0Q. We put g* = g on I';. In the case 1,(I';) > 0,
we put in addition

g*=0 onany Scrl,, S+S5', Sel(2),

where S’ € I'(2) is a fixed face in I',. It is easy to see that on this remaining face
S' < 0Q", g* can be defined (e.g., as a linear function) so that

J wifdx + j wighds =0 VYwe W, = {veV,|ev) =0} .
aom

Next, we define g* step by step on Se I'(Z), S ¢ 0Q. Letj successively attain the
values m,m — 1, ..., 2.
Let S, ..., 8{, k; e {1,2, 3,4}, be all external faces of K/ which belong to 8Q/~".
Then we define an auxiliary function g/ € [L,(0K’)]* by
g’=0 on Si ...Si,

i = g% Jj J
gl_g on Sk_,v+l""ss4y
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and we choose ¢/ linear on the remaining face Sj so that

(5-6) J‘ wlfdx + J wig'ds =0 Ywe W,.
KJ 0K J

Setting now

(5-7) gt = —g’ on Si .. Si,

J

we see that the forces f, g* and their moments are equilibrate on @771, i.e.,

J wTfdx +j wigtds =0 VYweW,,
Q

j=1 oQi-1
since

j wfdx +J~ wigHds =0 VYwe W,.
0

J o0J
Finally, for j = 1 we put g' = g* on 0K'.
Let t/ € Ty, j = 1, ..., m, be the tensor from Lemma 5.1 which corresponds to the
forces f. g’ satisfying (5-6) on K’. Define T e T, by

T=1tv on K;, j=1,...,m.

Using (5-3) and (5-7), it is easy to show that Tn is continuous at the external faces
of the tetrahedra of . Therefore, by Lemma 4.1, 7€ T, and evidently T € E@(f, g). ™

Proof of Theorem 5.1. The set E,(0, 0) is closed in 7, since it is a finite-dimen-
stonal subspace of T. Thus, the nonempty set

E (f,9) = E,(0,0) + 7,

where 7 € E,(/, g), is closed in T and obviously convex. Using the T-cllipticity of the
symmetric bilinear form a(., .) in (1—6), we get that the solution o, € Eg(f, g) exists
and is unique (sce [4], Theorem 1.1.1). =

Lemma 5.3. E,(0,0) = E(0, 0).
Proof. Let 1€ E,(0,0) = T. Since /S e Vs for Se I'(Z) and
J vTtvds =0 Yoels, Scly,
N

we get v = 0 on I'y. Together with div T = 0, which follows from Lemma 4.2, we
have by (1-3) and (1-7) for. ¢(v)dx = OVoe V. =

Theorem 5.2. There exists a constant C(a) such that
0 | 4 € Eq(f, 9)} :

Proof. The functional (1-6) attains its minimum over the set E(/, g) at ¢ if and
only if (see [4], Theorem 1.1.2)

a((r,‘c — a) > I)(r - 0) VteE(f, g).

lo = aullo = C(a)inf {]o — <,
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Therefore,
a(o, y) = b(x) Ve E(0,0)
and analogously we obtain
a0y, 74) = b(xs) Vi€ Eo0,0).
Thus, by Lemma 5.3,
a6 — 04,0, — 1) =0 Vige Eg(f, g).
Using (1-5), (1-6) and the Schwarz inequality, we obtain

Culle — 045 < alc — 04,0 —0,) = aloc — 64,0 — 1,) £

< CSHO' — Oglo |09 — T,’/”O

for any 1,€ E,(f,g). ®

Note that this theorem has been obtained by modifying Cea’s lemma (see [4],
Theorem 2.4.1), where the infimum is taken over the whole space of finite elements
and not only over a subset, as was the case in the present proof.

6. L,-ESTIMATE FOR THE EXTERNAL APPROXIMATION

In this section we use a standard convergence technique (see [2, 4,8, 9]) First, we
introduce the composed reference tetrahedron K with the vertices 4, B, C, D the co-
ordinates of which are (1, 0, 0), (0, 1, 0)T, (0, 0, )T, (0, 0, 0)", respectively, and with
an interior point £ which coincides with the gldwty center, ie., E = (% }i, %)T.

In the following, M denotes a fixed regular family of decomposition of @ (with
a coefficient ) consistent with I'; and I',. Suppose, for simplicity, that the interior
point E of any K € & € 9 is the gravity center. Let A, B, C. D be vertices of some
Ke % eI, their Coordmates being given by (3-3). Define an affine one-to-one
mapping Fy : K - K by

(6-1) Fi(f) = Byt +d, %eKk,

where By = (@ — d, b — d, ¢ — d)is a regular matrix as Fx(4) = 4, ..., F¢(D) = D
Furthermore, Fy(E) = E. Clearly,

(6-2) | By = ° L e = d|)) = 3hg.
Since it is known that (;(K) = [dct B,\| (see e.g. [11]), it follows from (3-2) that
(6-3) Socdhy £ Lldet By

Denoting by By the matrix of the algebraic adjoints of By, the components of which
can be evidently estimated by 2/%, we arrive at
1

_ . 3 _
(6-4) B = ’|E’t 5 \ IBE|| < i , S 6hg < % Phgt
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For t e T(K) define % e T(K) by
(6-5) #(%) = Bg'tf(Fi(%)) (Bx")T, %eK.

Further, for m = 0, 1,2, ... and a nonempty bounded domain Z < ®* with a Lip-

schitz boundary define the space
#7(2) = [H(2)) ~ T(2)

with the norm ||.|,, ;. First, we shall approximate stresses t e #'(K) as in [9] for
the two-dimensional problem:

To any t e #'(K) assign [Tt e T satisfying
(6-6) J oTI139 ds = J o729 ds Voe Vg
s
for any external face S of K with the outward unit normal 9, and

(6-7) [ 1% dz :J tdk.
K R

o

By Theorem 2.1 it follows that IT% is uniquely determined by these requirements,
since for any S there exists a unique linear vector function ig e Vs such that

and thus, [1%9/S = is.
Lemma 6.1. There exists a constant C such that

|20 = C|t| ik Vie#'(K).

Proof. By Theorem 2.1 there exists a linear operator # : R** - Ty, which
assigns to any vector o = (0, ..., %4,)" an element ¢ € Ty such that

@P((ﬁ):aps p= 1,...,42,

where the degrees of freedom @p are defined, for simplicity, by the outward unit
normals 9; of K. Thus, there exists a constant C; > 0 such that
Loy
o [ollog < 2]l < (oF + .o + 036)""2 + (037 + ... + 0fy)/? =
]
4 3 :‘
= (%, Tloqnspre + || pas voer..
Since all norms in a finite-dimensional space are equivalent and since
3
tie Vs, ( Zli\?f(Mu)H)”z
i=

68



is the norm in Vg, for all external faces S, « K, i = 1,2, 3, 4, we arrive at

(6-8) lollos = € (vallo,k + | ‘ ¢ dg, )

where C, does not depend on ¢ e Ty. Let te #'(K). Applying ¢ = 1%0/ge Vg
0 (6-6), we obtain by the Schwarz inequality

~

(6-9) ””f = [Aoo.s [#9o.s -

Referring to (6-7), (6-8) and (6-9), we see that

(6-10) 172]0.x < Q(Hﬁfﬁ”o,m + j It df) <
IR H

' ‘
< C, ((nfoto,m + M fdf‘l

H R
Using the trace theorem [7, 10] and the Hélder inequality, we get
|82 = CLC 2]k + ia(K)) [tox) = Cll2)i -

Lemma 6.2. There exists a constant C such that

It — MMt]ok < Clt|,x Vie#™R), m=12.
Proof. Form = 1,2 and J € #°(K) define the linear functional " by
(6-11) E#) = (& — 0%, 9)ox, teA"(K).
Applying the Schwarz inequality and Lemma 6.1, we obtain
=) = [t - ”fllu Hwilm =+ O elx los =

IA

Since [1¢ = ¢ for ¢ e [P,(K)]* n T(R), we see that Z" = 0 on [P, ,(K)]° n T(K),
m = 1, 2. Using Bramble-Hilbert Lemma [2, 4, 8], we get
C %lm,k’ Ell])”O,R Vie %",(K) 4

=t

which together with (6-11) proves the lemma. ®

Now, we formulate an analogous lemma for re,}ﬁ”(K), K e & e 9. Similarly
as for I1, we define the operator I, : #'(K) — T by

(6-12) L v (t = Igt)nds =0 Yue Vg
for any external face S of K with the normal n, and

(6-13) JK(T —T1)dx = 0.

It is worth noticing that ITgt does not depend on the size of n.
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Lemma 6.3. There exists a constant C' such that for any tetrahedron K of any

decomposition 2 € MM we have
[t — Mytlox = ChY tl,,,‘,\. Vee #"(K), m=12.
Proof. Using the previous notation, we assign to any v e Vg a vector § € Vs by
8(§) = By o(Fx(5)), $eS.
It is easy to show that n = (Bg')T ¥ is the normal of the face S = Fy(S). Then (6-5),

(6-12) and (6-13) imply that

AN
0 =f v(t = Mgt)nds =J 0By ' By(t — W 1g7) BR(Bg')T 9
N N

N\
= | (t = Hyt)dx = | Bu(t — I1;7) BEldet By| d% .
. K|

Therefore, f 7(¢ — :\T ds =0, J (- [1,\1 =0

for any b e Vi and any external face S of K. Comparing this with (6-6) and (6-7),

we get
s

(6-14) Myt = 1t
for any re,%f”'(l(), m = 1,2, and the corresponding % e #"(K). By (6-5), (6-14)
and Lemma 6.2

(6-15) |Jr — ]7,J”0 k < ||Bi|? |det B2 |[# — 2]k <

m,R
for m = 1, 2. It is known [3, 4] that any component t,; € ]1"‘(1() fulfils

"|det B V2 [tlwk, om=0,1,2,..

lTij ° FKlm,R = ”BK
where Fy is defined by (6-1), o denotes the composition of the functions t;; and Fy.
Therefore, by (6-5),

(6-16) ok < 9B |IBi|™ [det By~ <],/ ks om =0.1,2, ...
Referring to (6-15), (6-2) and (6-4), we see that
Je = Mo < OTIBI" 1857 e < 374000t

m,K
form=1,2 =

Theorem 6.1. There exists a constant C such that for any & € I
if oceA'(Q),
if oe?*(Q),

0o = Chylo

< Chylo

lo = os

lo = oallo
where o and a4 are the solution of the dual problem and the solution of its external

approximation, respec?tively.
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Proof. Let & € M be arbitrary. For te #'(Q) define II e T, so that
HQ’L'/K =1lyt, Ke9.

Using Lemma 4.1 and (6-12) for cach Se I'(Z), it is casy to see that M te T,. By
Lemma 6.3 and (3-1) we obtain

(6-17) “T — M|, = (K;!HT — ,\THO )V (Z C'hm r|,f, )Y

for te A™(Q) and m = 1,2. Il e #'(Q) n E(f, g) then by Green’s formula and
(1-7), (6-12), (6-13), (4- 3) we get that for any K e &

J~Lfd\~— v divrdrx:j.‘r.f:(v)dx—‘[ vTvds =
K K K oK

j 7 - &(v) dx —J T tvds = ——J‘ vt div Mgt dx Vee Vg
oK K

rpm

m

and

[ Ty ds = J vty ds = J' VT ,tvds Yoe Vg,
Js s s

where S « I'y, Se I'(2). Thus It € Ey(f, g). Using (6-17) for 1 = o and Theorem
5.2 we obtain

HO' = Ogllo

< C(a) o — Mo

Olp, Mm=172. ®

7. L,-ESTIMATE FOR THE EXTERNAL APPROXIMATION

Given a closed domain 0 + Z = K*, we define the norm
[eloz = esssup @) . e [L(2)).
and set |||, = |.|.0 For m=0,1,2,.... put
wn(z) = [C"@)] A T(Z), “(Z)= ().

Note that we can extend the domains of the operators I1, [Ty, I, also by tensors
of the spaces ¢(K), %(K), %(Q), respectively.

Lemma 7.1. There is a constant ¢ such that for any Ke & € 9

[Mt|. x S ¢lt]ox Vre ¢(K).

Proof. Since all norms in a finite-dimensional space are equivalent and since (6-10)
holds also for ¢ € %(K), we have

) 10 S it = o [ehoss + | [ 205) 5 el

where ¢ does not depend on T € (6(1\).
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Now, let K € Z € M be arbitrary. Similarly as in (6-14), we can prove that [Tyt =
= [1% for t € ¢(K) and the corresponding ¢ € %(K). Thus, (6-5), (7-1), (6-2) and (6-4)
yield

12

el = 1B ITiel ok = 1Bl 1080 5 2]Bal? ek

= & Bil” [B< | el = €t

Lemma 7.2, For any te "6’2(57) there exists a constant c, such that

(7-2) It — Hyt||, < ch VZeM.

Proof. Let e ¢%(Q) and let K € Z € M be arbitrary. Let x° = (x{, x9, x3)T e K
be fixed. Then, for any x = (x,, X5, x3)" € K Taylor’s formula gives
(7-3) 1(x) = 1(x%) + 7(x) + 37"(x).,

where the matrices t'(x) and 1"(x) have

igﬂ(x_o)(k—xk) and i U_T:L@:AX)’( = x0) (i = i)

k=1 Oxy Ki=1  0X; 0x,

in the position (i, j), respectively, and 0;/(x) = 0,(x), i,j = 1,2, 3, lic on the line
segment xx. Since ITxp = ¢ for ¢ € [P{(K)]” n T(K), we have from (7-3)

(1) (x) = o(x°) + 1(x) + (") (x).
We again use (7-3) to obtain by Lemma 7.1 and (3-1) that
_l+e

[r = Hgtl|o x = 47" = i7"

1+ ¢ 3 3 . (2)\2\ /2
<——esssup( Y [ Y iz h: < e}
2 zeQ i,j=1 \U,I=1 ;(‘(k Ux,‘

for any K € Z € 9. Hence, (7-2) is valid. =

Theorem 7.1. Let 9 be strongly regular. If o € €*(Q), then
lo —04]., = O(h?) as h,->0, Ze.

Proof. Let K € Z € M be arbitrary. Then by (6-5), (6-16), (6-2), (6-3) and (6-4)
we obtain for 7 € Tk that

(7-4) [l = [B&l* 2k = col| Buf* [Eox =
= co|[Bel 9B [* |det B[ "2 [[zflo.x = ¢/hi* ok

where ¢, is from (7-1) and ¢’ does not depend K € 2 € 9 and 7 € Ty. Since i is
strongly regular — see (3-2) — we get

[ellx = h[elo = Cox®lellon = 20> [ello.x = e el
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for any te T, and K € & € 9. Consequently,
-9 el 5 ch>2lely vee T,
Now, by Theorem 6.1, (7-2) and (6-17) we have
lo = 04l £ o = Myol, + chz®?|[My0 — o]0 <
< ¢, hg + chy’*([o = Moo + [0 = 04f0) =
c g +

al,) = O(hy”)

A

I\

- chy > (C'hylol, + Ch,

for o € ¢*(Q).

Remark. We have chosen the assumption of strong regularity of the family 9,
because we cannot estimate Ha — 04lo.x locally in terms of hj, but only globally
in terms of k7. Furthermore, note that the L_ -estimate of the analogous two-dimen-
sional problem will be even O(hg), since we can bound the absolute value of the
determinant of the affine mapping (from the reference triangle to an arbitrary triangle)
from below in terms of hz-compare with (6-3) and (7-4).

8. INTERNAL APPROXIMATION OF THE DUAL PROBLEM

We introduce another type of the approximation of the dual problem which has
been studied by Hlavdcek [8] in the two-dimensional elasticity.

Let 7€ E(f, g) be fixed. Using the substitution t = 7° 4+ 7, we can formulate the
dual problem of Section 1 equivalently in the following way:

Find ¢® which minimizes the functional J® : T — R' defined by

JO(IO) = %a(ro, ro) — b(ro) + a({', 10), e,

over the set E(0, 0). (One casily sees that ¢° + 7 = 0.)

Definition. An internal approximation of the dual problem consists in finding ¢%
which minimizes J° over the set E_(0,0). The tensor ay + T is called the solution
of the internal approximation.

As in Section 5, we can show that ¢ exists and is unique. The previous problem is
called the internal approximation, since E,(0, 0) = E(0,0) by Lemma 5.3, i.e., we
approximate the set E(0, 0) internally. Obviously, J°(¢°) < J°(c%), while the ana-
logous inequality for the external approximation does not hold in the general case,
since Eg4(f, g) is not a subset of E(f, g) in general. Using the above inequality and
knowing, moreover, an approximation of the primary elasticity problem, we could
obtain a posteriori error estimates and two-sided bounds of energy [7] Since o —
— (6% + 1) = ¢° — ¢, it is sufficient to study the convergence of the difference

6® — gd.
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Theorem 8.1. There exists a constant C independent od & € M such that

6® —adl, £ Chtle®
il

. il e AM(Q), mo=1,2.

Proof. It can be proved as in Theorem 5.2 that

(8-1) lo° -

If 6% € #°'(Q), then we know from the proof of Theorem 6.1 that I1,6° € E,(0, 0).
Thus, by (6-17),

1

0 0
lo® = a3l =

9o = Cla)inf {|o® — %], | 70 € E,(0,0)}

n O'0|

\m

- "9‘70”0 <

for c®e A™(Q), m=1,2. =

Remark. A question arises about the convergence of the method when ¢ is not
smooth enough. Thus let ¢° ¢ #7'(Q) and Ict ¢° € E(0, 0) n #7'(Q). Then from (8-1),

2lo) | 70 € E,(0.0)}) <
£ ((a)] o° = ¢°lo + C(a)] 0 = o0, -

Since the second term is O(h,J), in order to obtain convergence it is necessary to find
¢° € E(0,0) n #'(Q) sufficiently close to ¢° e E(0, 0) in the L,-norm. This can be
done in the same way as for the plane problem in [8] (Theorem 4.3). where it is proved
that the set E(0,0) n [C*(2)]* is dense in E(0, 0) (with the topology of [L,(2)]*)
provided certain assumptions on the domain Q = R? are satisfied; e.g., if '} = 09,
the author supposes Q to be starlike.

lo* = o5 < Cla) (| a® — o], + int {J°

Theorem 8.2. Let 9 be strongly regular. Then for ¢° € €*(Q).

[o°

o =O0()?) as h, -0, ZeM.

Proof. Referring to (7—5), (7-2), (6-17) and Theorem 8.1, we see that

[o* = 3l < 6" — M,o°]., + iy 16" — 31, <
< ol + chg* ([0 — Hyo°o + [0° — o5 o) =
< cphy + chy + Chy|o®|,) = O(hg?). ™
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Souhrn

METODA ROVNOVAZNYCH PRVKU V TROJROZMERNE
PRUZNOSTI

MicHAL KRiZEK

Je vySetfovdn Cctyfsténny rovnovazny prvek napéti, ktery vznikl zobecnénim
trojuhelnikového rovnovdzného prvku zavedeného Watwoodem a Hartzem [6].
Na dané polyedrické oblasti jsou studovdny dva rizné typy po cdstech linedrni
aproximace dudlni ulohy linedrni pruznosti metodou konecnych prvki. Pro oba typy
je dokdzdna konvergence v L,-normé fddu O(h*) a v L -norm& fddu O(h'/?) pro
dostate¢né hladké feSeni. Za tim ulelem je také dokdzdna existence silné reguldrniho
systému rozkladii polyedru na Ctyfstény.
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