[2] И. А. Биргер:
Некоторые математические методы решения инженерных задач. Изд. Оборонгиз (Москва, 1956).
Zbl 0995.90522
[3] H. Bückner:
An iterative method for solving nonlinear integral equations. Symp. on the numerical treatment of ordinary differential equations, integral and integro-differential equations, 613 - 643, Roma 1960, Birkhäuser Verlag, Basel- Stuttgart, 1960.
MR 0129571
[4] J. Kolomý: On convergence of the iteration methods. Comment. Math. Univ. Carolinae 1 (1960), 18-24.
[5] J. Kolomý:
On the solution of homogeneous functional equations in Hilbert space. Comment. Math. Univ. Carolinae 3 (1962), 36-47.
MR 0149306
[7] J. Kolomý:
Some methods for finding of eigenvalues and eigenvectors of linear and nonlinear operators. Abhandlungen der DAW, Abt. Math. Naturwiss. Tech., 1978, 6, 159-166, Akademie-Verlag, Berlin, 1978.
MR 0540456
[8] M. А. Красносельский, другие:
Приближенное решение операторных уравнений. Наука (Москва, 1969).
Zbl 1149.62317
[9] I. Marek:
Iterations of linear bounded operators in non self-adjoint eigenvalue problems and Kellogg's iteration process. Czech. Math. Journal 12 (1962), 536-554.
MR 0149297 |
Zbl 0192.23701
[10] I. Marek:
Kellogg's iteration with minimizing parameters. Comment. Math. Univ. Carolinae 4 (1963), 53-64.
MR 0172459
[11] Г. И. Марчук:
Методы вычислительной математили. Изд. Наука (Новосибирск, 1973).
Zbl 1170.01397
[12] W. V. Petryshyn:
On the eigenvalue problem $T(u) - \lambda S(u) = 0$ with unbounded and symmetric operators T and S. Phil. Trans. of the Royal Soc. of London, Ser. A. Math. and Phys. Sciences No 1130, Vol. 262 (1968), 413-458.
MR 0222697
[13] А. И. Плеснер:
Спектральная теория линейных операторов. Изд. Наука (Москва, 1965).
Zbl 1099.01519
[14] Wang Jin-Ru (Wang Chin-Ju):
Gradient methods for finding eigenvalues and eigenvectors. Chinese Math. - Acta 5 (1964), 578-587.
MR 0173358
[15] A. E. Taylor: Introduction in Functional Analysis. J. Wiley and Sons, Inc., New York, 1967.