Article
Keywords:
induction method; regula falsi; $p$-dimensional rate of convergence; secant method; iterative procedure
Summary:
In this paper we introduce the notion of "$p$-dimensional rate of convergence" which generalizes the notion of rate of convergence introduced by V. Pták. Using this notion we give a generalization of the Induction Theorem of V. Pták, which may constitute a basis for the study of the iterative procedures of the form $X_{n+1}=F(x_{n-p+1},X_{n-p+2},\ldots, x_n)$, $n=0,1,2,\ldots$. As an illustration we apply these results to the study of the convergence of the secant method, obtaining sharp estimates for the errors at each step of the iterative procedure.
References:
[1] M. Balazs G. Goldner:
On existence of divided differences in linear spaces. Revue d'analyse numérique et de la théorie de l'approximation, 2 (1973), 5-9.
MR 0378398
[3] T. Popoviciu:
Introduction à Ia théorie des differences divisées. Bull. Math. Soc. Roum. Sci., 42 (1941), 65-78.
MR 0013171
[5] V. Pták:
Nondiscrete mathematical induction and iterative existence proofs. Linear algebra and its applications 13 (1976), 233 - 238.
MR 0394119
[10] С. Улъм:
Об обобщенных разделенных разностях. I, II И АН ЭССР, Физика, математика, 16 (1967) р. 13-26, 146-156.
MR 0215489 |
Zbl 1103.35360