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SVAZEK 26 (1981) APLI K ACE M ATE M ATI KY ČÍSLO 2 

AN APPLICATION OF THE INDUCTION METHOD 
OF V. PTAK TO THE STUDY OF REGULA FALSI 

F L O R I A N A L E X A N D R U POTRA 

(Received January 30, 1979) 

Let Rp denote the p-dimensional Euclidean space, i.e. the set of all vectors r of p 
real components rh i = 1, ..., p. In Rp we shall consider the relation " ^ " induced 
by the cone Rp

+ = [reRp; rt ^ 0, i = 1, ..., p}. Let T be a p-dimensional interval 
of the form T = [r e Rp; 0 < rt < at} i = 1,2, . . . , p , where the numbers a{ i = 1, ... 
...,P, are supposed to satisfy the inequalities a1 ^ a2 ^ . •. ^ ap < 0. Some of 
these numbers may be infinite. If co is a real function of p real variables which maps 
the p-dimensional interval T into the interval ]0, a p [ = {r e R; 0 < r < ap}, then 
we may define inductively: 

(1) <o°(ru ..., rp) = r „ af + 1(rl9 ..., r,) = < r 2 , ..., rp, 0)(r1? ,.., rp)) 

n = 0, 1, 2, ...; T G T . 

Using the above notation we can define the notion of p-dimensional rate of conver­
gence which generalizes the notion of rate of convergence given in [5], [6]. 

Definition 1. A function OJ : T-> ] 0, a p [ is called a p-dimensional rate of con-
oo 

vergence if the series a(r) = ]T O/(r) is convergent for any r e T 

To the p-dimensional rate of convergence co, let us attach a vector function o : T —> 
—> T defined by 

(2) ci(r l 5 . . . , r p ) = (r 2, ..., rp, tn(r l 5 . . . , r p ) ) , r e T . 

Then the iterates w" of to are defined as follows: 

(3) o°(r) = r, on + 1(r) = (o(of(r)) 9 n = 0, 1, 2, ..., r e T. 

As co is a p-dimensional rate of convergence, then for any r e T, the following series 
is convergent in Rp: 

71 = 0 
(4) <K'') = ľ «"('•)• 
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The above introduced vector functions io and a are evidently connected by the follow­
ing relation: 

(5) d(r) = (r(a)(r)) + r , r e T. 

Let us denote by ai, ..., crp the components of the vector function a. Then we obvi­
ously have the following relations: 

00 

(6) <rp(r) = a(r) = 2 > " ( r ) , reT, 
n = 0 

(7) <r,-J(r) = <x(r) + £ O - k-= 1, 2 , . . . . j» - 1 , r e T . 
j = /7-fc 

Now, let (K, d) be a complete metric space, x an element of X, and A a subset 
of X. We denote by d(x, A) the g.l.b. of the set {d(x, y); y e A}. If A is a subset 
of Kp, then Ax will denote the set {xte R;(xx, ..., xp)e A}. Let x = (xt, ...,xn) 
be an element of Xp. We denote by d(x, A) the vector from Rp

+ with components 
<1(x;, Af), i = 1,2,..., p. We shall use the following notation: 

(8) U(A; r) = {xe Xp; d(x, A) g r} . 

If x is an element of Xp, we shall write U(x, r) instead of U({x}, r) for simplicity. 
Let {Z(r)}reT be a family of subsets of the space Xp. We define the limit of this family by 

(9) z(o) = n ( u z(/r)-
seT t^s 

We can state now the following generalisation of the Induction Theorem of V. 
Ptak [4]: 

Theorem 1. If 

(10) Z(r)eU(Z(«,(r)),,), 

for eachr e T, then 

(11) Z(r)cU(Z(0), <-(>)) 

for each re T. 

Proof . If x0eZ(r), then by (10) there exists an xx e U(x0, r) f) Z(co(r)). Now, 
using again (10), there exists an x2 e U(xu w(r)) f| Z(co2(r)). We infer by induction 
that for any n e {0, 1, 2, . . . } , there exists an x n + 1 e U(xn, a)n(r)) f)Z(ojn+l(r)). Because 
of the convergence of the series (4) it follows that the sequence (x, ,)^! is a Cauchy 
sequence in Xp. Hence it has a limit x^. Now, as x„ e Z(of(r)) and lim con(r) = 0 
it follows that xr/D e Z(0). „ ^ "-00 

On the other hand, d(x0, xK) ^ Z 4 x « + i' x«) = Z ^ ( r ) = *(*•) and thus the 
M = 0 n = 0 

proof of the theorem is complete. H 
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In the following we shall show how Theorem 1 can be applied to the study of 
convergence of iterative procedure of the form 

(12) xn + 1 = F(x„_p+1,xrt_p+2, ...,xn), n = 0, 1,2, ..., 

where F is a mapping of Xp into X and x0 = (x_ p + 1 , x_ p + 2 , . . . ,x 0 ) is a fixed 
element of Xp. Suppose we can attach to the pair (F, x0) a family of sets {Z(r)}reT a 
c= Xp and a p~dimensional rate of convergence co such that the following conditions 
are satisfied: 

(13) x0 e Z(r0) for a certain r0 e T. 

(14) If reT and y = (yl9 ..., yp) e Z(r) , then 

(y29...,yp9F(y))eZ(co(r))f)U(y,r). 

The above conditions imply, according to Theorem V that Z(0) is not void. More­
over, it follows that via the iterative procedure (12) one obtains a sequence {x„},<jxL0 

which converges to an element x* e X with (x*, ..., x*) e Z(0), and such that for any 
n e {0, V 2, ...} the following relations are satisfied: 

(15) xn = (xn„p+l,xn„p+2,...,xn)eZ(con(r0)), 

(16) d(xn+1,xn)^con(r0), 

(17) d(x„, x0) S <x(r0) - <?(a>n(r0)) , 

(18) d(xn9x*)£(r(af(r0)). 

The inequality (18) will be called an apriori estimate of the distance between the 
elements of the sequence {x7T}^°=0 and x*. The name of "apriori estimate" is justified 
by the fact that the right hand side of (18) can be computed before obtaining x t , x2, . . . 
..., xn via the iterative procedure. Let us now suppose that for a certain n e {1, 2, ...} 
one has already obtained x1? x2, ..., xB. If 

(19) xn_leZ(d(xlvxn_1)) 

then taking xn_i instead of x0 and d(xn, xn_x) instead of r0, we infer, like in (18), that 

(20) d(xn, x*) ^ o((o(d(xn, xn_1)) = cx(d(xn, xn_,)) ~ d(xn, *n-l) • 

This inequality is called an "aposteriori estimate", because it can be computed only 
after obtaining x l5 x2, ..., xn via the iterative procedure. 

Summing up what we have stated above, we obtain the following. 

Corollary 1. If the conditions (13) and (14) hold, then via the iterative procedure 
(12) one obtains a sequence {x.J^o whicli converges to an element x*eK such that 
the relations (15) —(18) are satisfied. If, in addition, for some n e {V 2, ...} the con­
dition (19) is fulfilled, then for this n the inequality (20) is also satisfied. 
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In the sequel we shall apply Corollary 1 to the study of convergence of the secant 
method. First we shall state a lemma, whose proof is mainly based on the convergence 
of the secant method in a very particular case: 

Lemma 1. If d, H, q0 and r0 are positive constants satisfying the inequality 

(22) (V(r0) + V(«o + t-o))2 =S ± 

ti 

then the function 

r(q + r) (23) co(q, r) = 
r + 2 j(r(q + r) + a2) 

is a 2-dimensional rate of convergence on the interval T= {(q, r); 0 < q < oo, 
0 < r < oo}, and the corresponding function a is given by 

(24) o(q, r) = r - a + ^J(r(q + r) + a2) , 

where 

(25) a = ~ V((d - / / ? 0 ) 2 - 4Hdr0). 
2H 

Proof . First let us remark that the condition (22) implies that (d — Hq0)
2 ^ 

>̂ 4Hdr0, so that the formula (25) makes sense. Let us consider the real polynomial 

(26) f(x) = H(x2 - a2) 

and let us denote by x* = a its positive root. Let us consider for each pair (q, r) e T, 
the points 

(27) x0 = r + yj(r(q + r) + a2) , x_x = x0 + q , 

It is easy to prove that by the algorithm 

x = x - — X " ~ 1 ~~Xn / O O , « = 0 , 1 , 2 , . . . , 
X w + 1 x" / ( v i ) - / W A - j 

one obtains a sequence {x„}^L0 which converges to x*. We have evidently x_ t — x0 = 
= q and x0 - xx = r. Taking co(q, r) = [(x0 - x1)l(f(x0) ~ f(x1))]f(xl) and 
a(q, r) = x0 — x*, one obtains exactly the expressions (23) and (24). The fact that 

00 

the series £ co"(q, r) is convergent and that its sum equals a(q, r) is obvious. More-
n = 0 

over, for any n e {0, 1, 2, ...} we have: 

(28) xn - xn+1 = OJ"(^, r ) , 

(29) x„ - x0 = a(q, r) - a(con(q, r)) , 

(30) xn - x* = O>"(g, r)) , 
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where, as in (5), we have denoted 

(31) co\q, r) = (q, r) , con(q, r) = (con~ l(q, r) , con(q, r)) , n = l , 2 , . . . • 

The generalization of the secant method that we will study below is based on the 
notion of divided difference of an operator. This notion was introduced by J. Schroder 
[8] and represents a generalization of the usual notion of divided difference of a func­
tion [3], in the same sense in which the Frechet derivative [2] represents a generaliza­
tion of the classical notion of derivative. 

L e t / be a (nonlinear) operator which maps a Banach space E into a Banach space 
F and let x and y by two distinct points of its domain. Let us denote by L(E, E) 
the Banach space of all bounded linear operators defined on E and with values in F. 

Definition 2. A linear operator A e L(E, F) is called a divided difference of the 
operator f on the points x and y, if the following equality holds: 

(32) A{x - y) = f{x) - f{y) . 

Concerning the existence of the divided differences of an operator, see [1]. Concern­
ing examples in some particular spaces, see [10]. 

Using the above defined notion A. Sergeev [9], and J. Schmidt [7] generalized 
the secant method, obtaining an iterative procedure for solving nonlinear equations 
in Banach spaces. Let the closed sphere U = U(x0, in) be included in the domain 
of/ and let D denote the set {(x, y) e U x U; x =f= y}. We may consider a mapping 
D 3 (x, y) -> [x, y;/] e L(E, F), where [x, y;/] represents a divided difference 
of the opera tor /a t the points x and y, i.e. 

(33) [x,y,f]{x- y)=f{x)-f{y). 

In [9] the author supposes that the mapping (x, y) -> [x, y;/] is symmetric (i.e, 
[x, y;f\ = [y, x : / ] ) , while in [7] this assumption is no longer required. In both 
of the above cited papers one supposes that the mapping (x, y) -> [x, j ; / ] satisfies 
a Lipschitz condition. We shall write this condition in the form 

034) |[*> y;/] - [«, »;/] | | ^ H(\\X - u|| + ||y - v||). 

It is easy to prove that if the above inequality holds for all x, y, u, v of U with x 4= y 
and u =# v, then the limit lim [x, y;f\ exists for any x e U, and it equals the Frechet 

y-+x 

derivative f'(x). Thus the mapping (x, y) -> [x, y ; / ] can be extended from D to 
U x U by taking [x, x ; / ] = f'(x). Let now x_j be a point of U such that the 
divided difference [ x _ ! , x 0 ; / ] is boundedly invertible. The generalized secant 
method is described by the following algorithm: 

(35) x,, + 1 = xn ~ [xn-.x,xn;fYx f(xn), n = 0 , 1 , 2 , . . . . 

The above iterative procedure makes sense if at each step the operator [x„_1, x, . ; /] 
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is invertible and the point x r t+1 obtained lies in the domain off In the following, 
we shall apply Corollary 1 and Lemma 1 to the study of convergence of the iterative 
procedure (35). We shall give sufficient conditions for the convergence of the se­
quence { x j ^ o to a root x* of the equationf(x) = 0, and shall obtain sharp estimates 
for the distances ||x„ — x*||. 

Theorem 2. If the conditions (33) and (34) are satisfied for all x, y, u, v e U = 
= U(x0, m) and if the following inequalities are fulfilled: 

(36) | x 0 - jc.-l __ go , 

(37) ( I t x ^ x ^ f ] - 1 ! ) - 1 ^ , 

(38) \[_x^,x0'JYlf(x0)\\ ^r0, 

(39) m ^ o(q0, r0) , 

(40) (V(r0) + V(<?o + r0))
2S ~, 

Ii 

then the iterative procedure (35) makes sense and the sequence {xJ^L0 obtained 
by it converges to a root x* of the equation f(x) = 0, so that the following inequalities 
hold: 

(41) ||x„ - x0|| ^ o(q0, r0) - o(of(q0, r0)) , n = 0, 1, 2, ..., 

(42) ||x„ - x*|| = v(cf(q0, r0)), n = 0, 1, 2, ..., 

(4_)( || Xn — X || S O(||Xn_1 — X M _ 2 | | , [J X., — X^- iHJ — || Xn — X n _ 1 | | , 

n = 1,2, ..., 

where co and o are given by (23) and (24) and OJ is related to co as in (31). 

Proof. For any pair of positive numbers (q, r) we consider the set 

(44) Z(q, r) = {(x, y)eU x U; ||x - y\\ ^ q, \\y - x0|| ^ o(q0, r0) - a(q, r), 

l ^ y j f ] - 1 ! - 1
 =h(q,r),\\[x,y;fYlf(y)\\ £ r} ; 

where we denote 

(45) % , r) = 2a + H(O; + 2 % , r)) . 

It is easy to verify that /?(g0, l"o) — d. This relation together with the inequalities 
(36) —(39) implies that (x_ l 5 x0) e Z(q0, r0). Thus the condition (13) of Corollary 1 
is fulfilled. Now, let us suppose that (x, y) e Z(q, r). Denoting 

(46) z = y-[x,yjylf(y). 

we have to prove that (y, z) e Z(r, co(q, r)). The condition II z — yll ^ r is obvious. 
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Taking into account the fact that (see (5)) 

(47) o(q, r) — r — o(r, co(q, r ) ) , 

we infer that IIz — x0|| _ o(q0, r0) — o(r, co(q, r)) . 
This relation implies that z belongs to U. In order to prove the invertibility of 

[v, z;f], we shall use the fact if A and B are two linear operators belonging to 
L(E, F) such that A is boundedly invertible and ||A — B|j < | |A _ 1 | | _ 1 , then B is also 
boundedly invertible and [IB -1]!"1 _ HA"1]!"1 - |]A - B|j. According to (34), (44) 
and (45) we have 

||[x,y;f] - [y , z ; f ] | | _ H(q + r) < h(q, r) _ ||[x, y^]"11| - 1 , 

so that [y, z;f] is boundedly invertible and we have 

(48) | [y , z ; / ] - 1 ! - 1 ^ h(q, r) - H(q + r) = h(r, co(q, r)) . 

F>om (46) we infer that 

(49) / (z ) = / (z ) - f(y) - [x, y;f] (z - y) = ([z, . ; / ] - [x, >•;/]) (z - >•). 

Using (34), (45) and (48), from the above equality we obtain 

||[y, z;f]-lf(z)\\ _ [h(r, co(q, r ) ) ] " 1 H(q + r) r - c%, r) , 

and the proof of the fact that (y, z) e Z(r, co(q, r)) is complete. Thus the condition 
(14) of Corollary 1 is also fulfilled. According to this Corollary the sequence { x j ^ o 
obtained by (35) converges to a point x* so that the inequalities (41) and (42) hold 
(see (17) and (18)). As in (49) we infer that 

f(Xn+l) = ([Xn+UXn'J] - [Xn-UXnJ])(Xn+l ~~ Xn) 

and, passing to the limit, we obtain f(x*) = 0, 

In order to complete the proof of the theorem, we still have to demonstrate the 
inequality (43). For this purpose, according to Corollary 1, it is sufficient to prove 
that 

(Xn_2, Xn_1j 6 Z(J|X/J_2 ~~ *ii-l||> H^n-l ~~ Xn\\) •> 

for every n e {1, 2, ...} (see (19)). The first and the last condition from the definition 
(44) of Z(q, r) are obviously fulfilled in this case. From (24) and (45) it follows 
that the functions o and h are increasing in the sense that if q _ qx and r _ rx, then 
o(q, r) _ o(qx, rx) and h(q, r) _ h(qx, rx). According to (15) we have 

(50) ||x„_2 - x^iH _ con~2(q0, r0) and \\xn_x - xn\\ _ con~l(q0, r0) 

for n = 1, 2,..., 

where for n = 1 one has to take co -1(g0, r0) = q0. 
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The above inequalities imply that 

(51) K l K - 2 - *»-i||> \\xn-i - x„\\) __ o(of~x(q0, r0)) and 

ft(||x«-2 ~ *«-i||> ||*n-i " *»|) _̂  h(o)n~1(q0, r0)), n = 1,2, . . . . 

From (15) it follows that (xn_2, x„-i) e Z((on~1(q0, r0)) for w = V 2, ..., so that 
we have 

(52) \\xH_l - x0\\ _S cr(q0, r0) - .r(e/ ,~1(g0, r0)) and 

| | [ x „ - 2 , * „ - i ; / ] ~ 1 l ' ' 1 __ hK'^qo^o)), n = 1,2,. . . 

Finally, (51) and (52) imply that the second and the third condition of (44) are also 
satisfied in our case. • 

Let us add some remarks concerning the hypotheses of the above theorem. The 
constant q0 appearing in (36) can be taken as small as desired, because having an 
initial approximation x0, we can take x_i to be a small perturbation of x0, for 
example x_x = (1 + e)x0 . The crucial hypothesis of Theorem 2 is the inequality 
(40). This inequality is satisfied only if r0 is small enough, which means that the 
initial approximation x0 is close enough to the root x*. However, we shall show 
that the condition (40) is, in a sense, the weakest possible. 

More precisely, we hawe 

Proposition 1, For any positive constants d, H, q0 and r0 with H(^j(r0) + 
+ V(#o + ro))2 > d, there exist a function f : R -> R and two points x0 and x_x 

such that (34) holds for all x, y, u, v e R, the conditions (36) —(38) are satisfied, 
but the equation f(x) = 0 has no solution. 

Proof . If H(V(qo + r0) + V W ) 2 > d > H(V(qo + r0) - J(r0))
2, take 

f(x) = Hx2 + dr0-—(d-Hq0)
2, x 0 = ^ ^ , x__ = ^ ^ 

V J 4HV ; 2H 2H * 

If H(V(qo + ^o) ~ V(ro))2 ^ d> takef(x) = (d\q0) x2 + r0 , x0 = 0, x_: = ^ 0 . • 

In the following proposition, we shall prove that the estimates (42) and (43) are 
in a sense, the best possible: 

Proposition 2. For any positive constants d, H, q0 and r0 with H(^J(r0) + 
+ V(^o + ro))2 _- d there exist a function f : R -> R and two points x0 and x_ t 

which satisfy the hypotheses of Theorem 2, and for which the inequalities (41) —(43) 
are verified with the signs of equality. 

Proof . The proof of this proposition is a consequence of the proof of Lemma 1; 
indeed, for/given by (26) and x0, x_x given by (27) with q = q0 and r = r0 we have 

/(»-0-/(».)_, a n d /__)_ r f t . _ 
X - i xn 
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Finally, we shall try to answer the question concerning the uniqueness of the solution 

of the equationf(x) = 0. From (41) it follows that ||x* — x0|| ^ o*(r0). Let V denote 

the open sphere with center x0 and radius /i = o~(q0, r0) + 2a. 

Proposition 3. If the inequality (40) from Theorem 2 is strict, then the root x*, 

whose existence is guaranteed by the same theorem, is the unique solution of the 

equation f(x) = 0 in the set U f] V. 

Proof. First, we note that the inequality (40) is equivalent to the inequality 

(53) - ^ (D0 + 2r0) + J(r0(q0 + r0)) . 
H 

If either (40) or (53) is strict, then a > 0. Let y* be an element of U f| V s u c r i l I i a t 

f(y*) = 0. Using (33) we obtain the relation 

(54) x* - y* = [ x . l 9 x 0 ; f ] - 1 ( [x_ l ? x0;f] - [x*, y*;f]) (x* - y*) . 

Now, taking into account (34) we obtain 

(55) |jx* — y*|| ^ — (l lx* — x . J + ||y* — x0||) j|x* — y*|| . 
d 

On the other hand, from (24), (36) and (53) we infer that 

J-f M 
(56) —(II** ~ *-i| | + ||y* ~ *o|) < — (Mro) + 2a + q0) = I . 

d d 

Finally, the inequalities (55) and (56) imply that x* = y*, so that the proof of the 

proposition is complete. • 
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S o u h r n 

APLIKACE INDUKČNÍ METODY V. PTÁKA 
NA VYŠETŘOVÁNÍ METODY REGULE FALŠÍ 

F L O R I A N A L E X A N D R U POTRA 

V článku se zavádí pojem "p — rozměrné rychlosti konvergence", který zobecňuje 
pojem rychlosti konvergence, zavedený V. Ptákem [5], [6]. S použitím tohoto pojmu 
je zobecněna jeho indukční věta [4] V. Ptáka, což umožňuje vyšetření iteračních 
procesů tvaru 

*n+l = (F(Xn-p+uXn-p + 2> - • ; *n) > H = 0, 1 , 2 , . . . . 

Výsledky jsou ilustrovány na příkladě konvergence metody sečen a jsou odvozeny 
ostré odhady pro chybu každého kroku iteračního procesu. 
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