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AN APPLICATION OF THE INDUCTION METHOD
OF V. PTAK TO THE STUDY OF REGULA FALSI

FLORIAN ALEXANDRU POTRA
(Received January 30, 1979)

Let R” denote the p-dimensional Euclidean space, i.e. the set of all vectors r of p
real components r;, i = 1, ..., p. In R” we shall consider the relation “<” induced
by the cone R%, = {reR’; r; 2 0,i = 1,..., p}. Let T be a p-dimensional interval
ofthe form T = {reR"; 0<r;<aji=12,..,p, wherethe numbers a;i = 1, ...
..., P, are supposed to satisfy the inequalities a; = a, = ... 2 a, < 0. Some of
these numbers may be infinite. If w is a real function of p real variables which maps
the p-dimensional interval T into the interval 0, a,[ = {re R;0 < r < a,}, then
we may define inductively:

: 0 ) = +1(, ) = - .

(1) @%ry, o ry) =1y 0" (ryy 1y = 0" (rg v (g, o 1))
n=0,1,2,...; reT.

Using the above notation we can define the notion of p-dimensional rate of conver-

gence which generalizes the notion of rate of convergence given in [5], [6].

Definition 1. A function w : T— 0, a,[ is called a p-dimensional rate of con-

0

vergence if the series o(r) = Y '(r) is convergent for any re T.
0

n=
To the p-dimensional rate of convergence w, let us attach a vector functionw : T —
— T defined by

(2) o(ry, ... r,,) = (ra .. Fps a)(rl, o rp)) , reT.
Then the iterates " of w are defined as follows:
(3) o’(r)=r, 0""'(r)=o0(0"(r), n=012..reT.

As w is a p-dimensional rate of convergence, then for any r € T, the following series
is convergent in R”:

0 o(r) =

n

M8

o'(r).

0

il
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The above introduced vector functions @ and ¢ are evidently connected by the follow-
ing relation:

(5) o(r)=o(a(r))+r, reT.

Let us denote by o, ..., g, the components of the vector function ¢. Then we obvi-
ously have the following relations:

(6) oy(r) = olr) = Z "(r) s

(7) ooi(r) = a(r) + Zr k=1,2,...p—1, reT.
ji=p—k
Now, let (X, d) be a complete metric space, x an element of X, and A a subset
of X. We denote by d(x, 4) the g.1.b. of the set {d(x, y); y € A}. If 4 is a subset
of X?, then A; will denote the set {x; € R;(x,,...,x,) € A}. Let x = (x,, ..., x,)
be an element of X?. We denote by d(x, A) the vector from R, with components
d(x;, A;), i = 1,2, ..., p. We shall use the following notation:

(8) U(A;r) = {xeXP;d(x, A) < r}.

If x is an element of X?, we shall write U(x, r) instead of U({x}, r) for simplicity.
Let {Z(r)},r be a family of subsets of the space X”. We define the limit of this family by
©) Z(0)=Nn(U2z@)).

seT t<s

We can state now the following generalisation of the Induction Theorem of V.
Ptak [4]:

Theorem 1. If

(10) Z(r) = U(Z(a(r)), r),

foreachre T, then

(1) Z(r) = U(2(0), o(r))

for eachreT.

Proof. If x, € Z(r), then by (10) there exists an x, € U(x,, r) | Z(e(r)). Now,
using again (10), there exists an x, € U(xy, o(r)) N Z(w*(r)). We infer by induction
that for any n € {0, 1,2, ...}, there exists an x, ., € U(x,, ®"(r)) NZ(w"*!(r)). Because
of the convergence of the series (4) it follows that the sequence (x,), is a Cauchy
sequence in X”. Hence it has a limit x,,. Now, as x, € Z(o"(r)) and lim o"(r) =0
it follows that x,, € Z(0). - no e

On the other hand d(xg, x,) < z X, 15 X,) S Z o'(r) = o(r) and thus the

proof of the theorem is complete. l
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In the following we shall show how Theorem 1 can be applied to the study of
convergence of iterative procedure of the form

(12) Xprt = F(Xyopits Xppiar oo X)) 0 =0,1,2, ...,

where F is a mapping of X7 into X and xq = (X_ 4y, X_ 15, ey Xg) is a fixed
element of X”. Suppose we can attach to the pair (F, x,) a family of sets {Z(r)},.r =
< X7 and a p-dimensional rate of convergence w such that the following conditions
are satisfied:

(13) xo € Z(ry) for acertain ryeT.
(14) If reT and y=(y....,»y,)€Z(r), then
(Y25 - v F(0)) € Z(o0(r)) N U(p, 1) .

The above conditions imply, according to Theorem 1, that Z(0) is not void. More-
over, it follows that via the iterative procedure (12) one obtains a sequence {x,},¢
which converges to an element x* € X with (x*, ..., x*) € Z(O), and such that for any
ne{0,1,2, } the following relations are satisfied:

(15) Xy = (Xppr 1 Xuopias oo X,) € Z(00"(rg)) .
(16) A(Xy4 1, %) S @"(ro) s

(17) d(xy, xo) = 0(ro) — o('(ro)) »

(18) d(x,, x*) < o(0"(ry)) .

The inequality (18) will be called an apriori estimate of the distance between the
clements of the sequence {x,,};',ozo and x*. The name of “apriori estimate” is justified
by the fact that the right hand side of (18) can be computed before obtaining x,. x5, ...
..., X, via the iterative procedure. Let us now suppose that for a certainn e {1, 2, ...}
one has already obtained x,, x5, .... x,. If

(lg) xn*l eZ(d(x,,, xnfl))
then taking x,_ instead of x, and d(x,, x,_,) instead of r,, we infer, like in (18), that

(20) d(x,, x*) £ o(w(d(x,, x,-)) = o(d(x,. x,_1)) — d(x,, X, 1)

This inequality is called an “aposteriori estimate”, because it can be computed only
after obtaining x, x,, ..., x,, via the iterative procedure.

Summing up what we have stated above, we obtain the following.

Corallary 1. If the conditions (13) and (14) hold, then via the iterative procedure
(12) one obtains a sequence {x,}x=o which converges to an element x*€ X such that

the relations (15)—(18) are satisfied. If, in addition, for some n e {1,2, ...} the con-
dition (19) is fulfilled, then for this n the inequality (20) is also satisfied.
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In the sequel we shall apply Corollary 1 to the study of convergence of the secant
method. First we shall state a lemma, whose proof is mainly based on the convergence
of the secant method in a very particular case:

Lemma 1. If d, H, q, and ry are positive constants satisfying the inequality

/ 2 - d

(22) (V(ro) + (a0 + 1r0)* = 0’
then the function

_ r(g+r)
(23) o(a, )= @+ 1)

is a 2-dimensional rate of convergence on the interval T = {(q,r);0 < q < o,
0<r< oo}, and the corresponding function o is given by

(24) o{g,r) =r —a+ J(r(qg +r)+ a?),
where
(25) a = EIITI J((d = Hqy)* — 4Hdr,) .

Proof. First let us remark that the condition (22) implies that (d — Hq,)* =
= 4Hdr,, so that the formula (25) makes sense. Let us consider the real polynomial

(26) f(x) = H(x* = a?)

and let us denote by x* = a its positive root. Let us consider for each pair (q, r) € T,
the points

(27) xg=r+J(rlg+r)+a*), x_y=x4+4q.
It is easy to prove that by the algorithm

Xn—1 — Xy
Xy =X, — —‘"“”’-——'—f(xn) ) h = 0> ]3 25 ceey
*1 x f(xn~l) —f(xn)

one obtains a sequence {x,,},‘,"’:0 which converges to x*. We haveevidently x_;, — x, =

=gq and x, — x; = r. Taking (g, ) = [(xo — x1)/(f(*0) — f(x;))] f(x,) and
o(q, r) = xo — x*, one obtains exactly the expressions (23) and (24). The fact that

the series Y. w"(q, r) is convergent and that its sum equals o(g, ) is obvious. More-
n=0

over, forany n€{0, 1, 2, ...} we have:

(28) Xy = Xy = (g, 1),
(29) x, — X0 = a(q, r) — o(0"(q, 1)),
(30) x, — x* = o(0"(q, 1)),
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where, as in (5), we have denoted

(31) o(q,r)=(q,7), @"(q,r)=(0""Ygq,7), @"(q,7), n=12 .. ™

The generalization of the secant method that we will study below is based on the
notion of divided difference of an operator. This notion was introduced by J. Schroder
[8] and represents a generalization of the usual notion of divided difference of a func-
tion [3], in the same sense in which the Fréchet derivative [ 2] represents a generaliza-
tion of the classical notion of derivative.

Let f be a (nonlinear) operator which maps a Banach space E into a Banach space
F and let x and y by two distinct points of its domain. Let us denote by L(E, F)
the Banach space of all bounded linear operators defined on E and with values in F.

Definition 2. A linear operator A€ L(E, F) is called a divided difference of the
operator f on the points x and y, if the following equality holds:

(32) Ax = y) = f(x) = f(y).

Concerning the existence of the divided differences of an operator, see [1]. Concern-
ing examples in some particular spaces, see [10].

Using the above defined notion A. Sergeev [9], and J. Schmidt [7] generalized
the secant method, obtaining an iterative procedure for solving nonlinear equations
in Banach spaces. Let the closed sphere U = U(x,, m) be included in the domain
of f and let D denote the set {(x, y)e U x U;x # y}. We may consider a mapping
D3 (x,y) > [x,y;:f] € L(E, F), where [x,y;f] represents a divided difference
of the operator f at the points x and y, i.e.

(33) [x v fl(x = ») = f(x) = f(»)-

In [9] the author supposes that the mapping (x, y) > [x, y; f] is symmetric (i.e,
[x. »;f] = [y, x : f]), while in [7] this assumption is no longer required. In both
of the above cited papers one supposes that the mapping (x, y) - [x, y; f] satisfies
a Lipschitz condition. We shall write this condition in the form

(34) |G v57] = [ws v /1] = H(lx =l + [y = o).

It is easy to prove that if the above inequality holds for all x, y, u, v of U with x % y
and u =+ v, then the limit hm [x, y; f] exists for any x € U, and it equals the Fréchet

derivative f’(x). Thus the mappmg (x,») =[x, y;f] can be extended from D to
U x U by taking [x, x; f] = f’(x). Let now x_, be a point of U such that the
divided difference [x_y, xo;f] is boundedly invertible. The generalized secant
method is described by the following algorithm:

(35) Xpr1 =%, — [ X X2 ] f(x,), n=0,1,2,...

The above iterative procedure makes sense if at each step the operator [x,,_l. x,,:f]
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is invertible and the point x,,, obtained lies in the domain of f. In the following,
we shall apply Corollary 1 and Lemma 1 to the study of convergence of the iterative
procedure (35). We shall give sufficient conditions for the convergence of the se-
quence 1x,,} o to a root x* of the equation f(x) = 0, and shall obtain sharp estimates
for the distances Hx,, - X H

Theorem 2. If the conditions (33) and (34) are satisfied for all x, y,u,veU =
= U(xg, m) and if the following inequalities are fulfilled:

(36) on - x—lH = 4o,

(37) (“[x_,, xolf]ﬂ”)_l =
(38) ”[x_l,xo;f]_lf(xo)“ S
(39) m = O'(CI()» ro) >

(40) (Vo) + (a0 + o) £ 40

then the iterative procedure (35) makes sense and the sequence {x,} -, obtained
by it converges to a root x* of the equation f(x) = 0, so that the following inequalities
hold:

(41)

X, — xOH < o(qo, ro) — o(0"(qo, 7o), n=0,1,2,..,,

(42) | < o(0"(go, 7o), n=0,1,2,...,
(43) %0 = x*| £ o(|xazy = xua] %0 = Xuzi])) = |20 = xuci]] s
n=12,...,

where w and o are given by (23) and (24) and o is related to w as in (31).

Proof. For any pair of positive numbers (g, r) we consider the set
(44)  Z(g.r) ={(x,y)eU x U; |x — v" q, |
(ESERA I =LA

where we denote

(45) h(q, ¥) = 2a + H(q + 20(q, r)).

y = Vo” < o(qo, 7o) — (g, 1),

Wl =7y

IV

It is easy to verify that h(q,, ro) = d. This relation together with the inequalities
(36)—(39) implies that (x_,, xo) € Z(qq. ro). Thus the condition (13) of Corollary 1
is fulfilled. Now, let us suppose that (x, y) € Z(q, r). Denoting

(46) z=y — [X, }';J[]—lf(y)'

we have to prove that (y, z) € Z(r, o(q, r)). The condition ”z - y“ < r is obvious.
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Taking into account the fact that (see (5))

(47) olg,r) = r = o(r, o(q, 7)),

we infer that |z — x,| £ o(qq. 1) — o(r, (q. 1)) .

This relation implies that z belongs to U. In order to prove the invertibility of
[, z: f], we shall use the fact if A and B are two linear operators belonging to
L(E, F) such that A is boundedly invertible and |4 — B| < ||[47"| ", then B is also
boundedly invertible and |[B™'| "' = |[47!| "' — |4 — B]. According to (34), (44)
and (45) we have

Il w5 /1 = [z S]] £ H(g +r) < h(g.r) £ ||[x 0 /1717

so that [y, z; f] is boundedly invertible and we have

(48) |0y 22017171 2 kg, r) = H(g + 1) = h(r, (g, 7).

From (46) we infer that

49)  f(2)=1() = f(0) =[xy 1z = ») = [z 0 f] =[x 03 /D (= = »).
Using (34), (45) and (48), from the above equality we obtain

[y, 20171 /@) = [h(r, (g, ] ™" Hig + 1) r = (g, 7),

and the proof of the fact that (y, z) € Z(r, (g, r)) is complete. Thus the condition
(14) of Corollary 1 is also fulfilled. According to this Corollary the sequence {x,,}fzo
obtained by (35) converges to a point x* so that the inequalities (41) and (42) hold
(see (17) and (18)). As in (49) we infer that

f(an) = ([Xn+1’ Xn;f:l - [xn—1- Xn;f]) (xn+! - xn)

and, passing to the limit, we obtain f(x*) = 0.

In order to complete the proof of the theorem, we still have to demonstrate the
inequality (43). For this purpose, according to Corollary 1, it is sufficient to prove
that

(Xp—2 X4o1) € Z( ),

for every n e {1,2,...} (see (19)). The first and the last condition from the definition
(44) of Z(q, r) are obviously fulfilled in this case. From (24) and (45) it follows
that the functions ¢ and h are increasing in the sense that if ¢ < ¢, and r < r{, then
o(q, r) < a(qy, ry) and h(q, r) < h(qy, r,). According to (15) we have

(50)

Xp—2 = Xy—1|]> ||[¥u-1 — Xn

!xn—-Z - Xn—l“ = wn_Z(QO’ "0) and = (0"_1(40» "o)

Xp—-1 — X";
for n=12,...,

where for n = 1 one has to take @~ *(qy, o) = qo-
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The above inequalities imply that

(51) a( ) = a(" " Y(qq, 1)) and
h(' ) £ h(@" (qo. o)), n=1,2....

From (15) it follows that (x,_,, x,_;) € Z(@" '(q¢, ro)) for n = 1,2, ..., so that
we have

s

Xp—2 — Xp-1

Xp—1 7 Xy

Xn—2 = Xp-1 Xpn—1 — xn!

s

(52) “x,,‘1 - xOH < a(qe, 1) — (0" '(qo, o)) and
“[x,,_z, X f17H 7 2 h(@0" (g0, 1)), =12,

Finally, (51) and (52) imply that the second and the third condition of (44) are also
satisfied in our case. m

Let us add some remarks concerning the hypotheses of the above theorem. The
constant g, appearing in (36) can be taken as small as desired, because having an
initial approximation x,, we can take x_, to be a small perturbation of x,, for
example x_; = (1 + ¢) x,. The crucial hypothesis of Theorem 2 is the inequality
(40). This inequality is satisfied only if r, is small enough, which means that the
initial approximation x, is close enough to the root x*. However, we shall show
that the condition (40) is, in a sense, the weakest possible.

More precisely, we hawe

Proposition 1. For any positive constants d, H, q, and r, with H({/(ro) +
+ (g0 + ro))* > d, there exist a function f: R — R and two points x, and x_,
such that (34) holds for all x, y, u, ve R, the conditions (36)—(38) are satisfied,
but the equation f(x) = 0 has no solution.

Proof. If H(\/(go + ro) + /(r0))* > d > H({(q0 + ro) = \/(ro))’, take

1 d — Hq d + Hg,
x) = Hx® + dry — — (d — Hq,)?, xq = - — 240 = ¢T "o
/) 0 4H( 90)"s %o 2H ! 2H

If H(\/(q0 + 1o) — /(r0))* = d, take f(x) = (d|qo) x* + 19, X =0, x_; =¢q,. ™

In the following proposition, we shall prove that the estimates (42) and (43) are
in a sense, the best possible:

Proposition 2. For any positive constants d, H, q, and ro with H(\/(ro) +
+ \/(qo + ro))2 =< d there exist a function f: R — R and two points x, and x_;
which satisfy the hypotheses of Theorem 2, and for which the inequalities (41)—(43)
are verified with the signs of equality.

Proof. The proof of this proposition is a consequence of the proof of Lemma 1;
indeed, for f given by (26) and x,, x_; given by (27) with ¢ = g, and r = ry we have

Soeon) = f(x0) _ 4y yng T

— and —/—= =r,. m
X_1 — X d
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Finally, we shall try to answer the question concerning the uniqueness of the solution
of the equation f(x) = 0. From (41) it follows that HA* — Xo|| = o(ry). Let ¥ denote
the open sphere with center x,, and radius u = a(q,, ry) + 2a.

Proposition 3. If the inequality (40) from Theorem 2 is strict, then the root x*,
whose existence is guaranteed by the same theorem, is the unique solution of the
equation f(x) = 0 in the set U () V.

Proof. First, we note that the inequality (40) is equivalent to the inequality

d
(53) ", 2 (qo + 2ro) + /(ro(do + ro)) -
If either (40) or (53) is strict, then @ > 0. Let y* be an element of U V such that
f(y*) = 0. Using (33) we obtain the relation
(54) x* — y* = [x_l, xo;f]_' ([x-1 xo: f] = [x* y*: F]) (x* — y¥).

Now, taking into account (34) we obtain
H
(55) e = = = (e = xal o+ o = o) [ = 7]

On the other hand, from (24), (36) and (53) we infer that

CON

Finally, the inequalities (55) and (56) imply that x* = y*, so that the proof of the
proposition is complete. H

H
X =g = xf) < (_1(2‘7("0) +2a +qo) = 1.
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Souhrn

APLIKACE INDUKCNI METODY V. PTAKA
NA VYSETROVANI METODY REGULE FALSI

FLORIAN ALEXANDRU POTRA

V ¢lanku se zavadi pojem “p — rozmérné rychlosti konvergence”, ktery zobeciiuje
pojem rychlosti konvergence, zavedeny V. Ptakem [5], [6]. S pouZitim tohote pojmu
je zobecnéna jeho indukéni véta [4] V. Ptaka, coz umoZiluje vySetfeni iteradnich
procest tvaru

Xpi1 = (F(Xu—ps1s Xuoprzro-nX,), n=0,1,2,....

Vysledky jsou ilustrovany na prikladé konvergence metody sefen a jsou odvozeny
ostré odhady pro chybu kazdého kroku iteraéniho procesu.
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