Previous |  Up |  Next

Article

Keywords:
multigrid method of the second kind; coarse grid smoothing iterations; convergence rate; numerical tests
References:
[1] G. P. Astrachancev: An iteiative method of solving elliptic net problems. Ž. vyčisl. Mat. mat. Fiz. 11 (1971), 439-448 (Russian).
[2] N. S. Bachvalov: On the convergence of a relaxation method with natural constraints on the elliptic operator. Ž. vyčisl. Mat. mat. Fiz. 6 (1966), 861 - 885 (Russian).
[3] A. Brandt: Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation 31 (1977), 333-390. DOI 10.1090/S0025-5718-1977-0431719-X | MR 0431719 | Zbl 0373.65054
[4] R. P. Fedorenko: The speed of convergence of one iterative process. Ž. vyčisl. Mat. mat. Fiz. 4 (1964), 559-564 (Russian). MR 0182163 | Zbl 0148.39501
[5] W. Hackbusch: On the convergence of multi-grid iterations. Beiträge zur Numerischen Mathematik 9, to appear 1981. Zbl 0465.65054
[6] W. Hackbusch: Die schoelle Auflösung der Fredholmschen Integralgleichung zweiter Art. in Beiträge zur Numerischen Mathematik 9, to appear 1981.
[7] W. Hackbusch: On the fast solving of parabolic boundary control problems. SIAM Journal on Control and Optimization 17 (1979), 231 - 244. DOI 10.1137/0317018 | MR 0525024 | Zbl 0402.49025
[8] W. Hackbusch: On the fast solving of elliptic control problems. To appear in JOTA.
[9] W. Hackbusch: On the fast solution of nonlinear elliptic equations. Numerische Mathematik 32 (1979), 83-95. DOI 10.1007/BF01397652 | MR 0525639
[10] W. Hackbusch: Numerical solution of nonlinear equations by the multi-grid iteration of the second kind. In: Numerical Methods for Non-linear Problems, Vol. 1 (C. Taylor, E. Hinton, O. R. J. Owen, eds.). Swansea: Pineridge Press 1980. MR 0820282
Partner of
EuDML logo