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SVAZEK 26 (1981) APLIKACE MATEMATIKY CisLo 1

ERROR ANALYSIS OF THE NONLINEAR MULTI-GRID METHOD
OF THE SECOND KIND

WOLFGANG HACKBUSCH

(Reccived Nevember 17, 1978)

1. INTRODUCTION

The name “multi-grid algorithm” is connected with the method of Fedorenko
[4]. Bachvalov [2], Astrachancev [ 1], Brandt [3] (further refererces in [5]) for the
fast numerical solution of elliptic problems. We shall call this method “multi-grid
iteration of the first kind” in contradistinction to the “multi-grid iteration of the
second kind” that is described by the author in [6] for the fast solving of Fred-
holm’s integral equation of the second kind. The first algorithm has a rate of con-
vergence bounded by a small constant independently of the step size, whereas the
second iteration has a convergence rate tending to zero when the step size apprcaches
Zero.

In Section 2 we describe the problem, its discretization and the assumptions we
need. The multi-grid algorithm of the second kind is explained in Section 3. Section 4
contains the qualitative analysis of the rate of convergence.

2. THE PROBLEM AND ITS DISCRETIZATION

2.1. Equation
We consider the system
(2.1) u = A (u)

of nonlinear equations. The function u is an clement of a Banach space B,. Let U C B,
be a neighbourhood of a (not necessarily unique) solution of (2.1). If we require that

(2.2) U be sufficiently small,

we may assume that //(u) is defined for all v € U. Furthermore, 4 is assumed to be
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Fréchet differentiable:

(23) K(v) := A"(v) (Fréchet derivative at ve U),
where the operator K(v) : B, = By is Lipschitz continuous:

(24) |K() = K(w)| 55, = Clo = wlay (v:weV).

Here and in the sequel C denotes a generic constant. Requirements weaker than
(2.3) and (2.4) are discussed in [6].
We introduce the notation

K :=K(u) (ueU asolution of (2.1)).

The multi-grid iteration can be applied to (2.1) only if the range of K belongs to
a Banach space By C B, with a finer topology. The essential property of & is

(2.5) |K] go-35, = C.
Here K may be replaced by its power K™ (m > 1 fixed; cf. [6]). The estimate
(2.6) [(I = K)™Y gy, < C (I :identity)

ensures that the problem (2.1) is properly posed.

Example 2.1. Consider a nonlinear integral equation

u(x) = f lk(x, y.u(y))dy (xe[0,1]),

0

where k(x, y,u) is Lipschitz continuously differentiable. Then K(v) is defined by

1
(K(v) w)(x) = j k(x, v, () w(y) dy.
0
Obviously, the requirements (2.4) and (2.5) are satisfied for the choice of B, =
= C°([0,1]) and B, = C™([0,1]) (m = 1) provided that (0[ox)" k,(x, y,u) is
continuous.

Example 2.2. Consider the elliptic problem —Au =u* in Q< R", u=0
on the boundary T of 2,1 < n < 3. Let f(v) be the solution of —du = v?,
u| r =0, or in short notation: A (v) := —A~'v>. Then K(v) defined by K(v)w =
= —247'(vw) fulfiils (2.4) and (2.5) if I is sufficiently smooth and if the Holder
spaces By = C’(Q), B; = C***(Q) (0 < ¢ < 1) or the Sobolev spaces B, = Ly(2),
B, = Hy(Q) (0 < % < 2 — n/2) are chosen.

Proofin the case of By = L,(Q), B, = Hy(®). The embedding H> *(Q) = L, ()
yields L, (Q) = L (Q) = (H>~*()) for the dual spaces. Therefore, w € By = L,(Q)~
—wwe L (Q) = (H> %(Q)) - A””(vw) € Hy(Q) = By shows (2.5). The continuity
of 471 :L(Q)— B, proves (2.4), too. L

Further examples are given in [6, 7, 8, 9].
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2.2. Discretization

The method is named ,,multi-grid™ iteration since we use a sequence of decreasing
step sizes:

(2.7) hg>hy>...>hy_y>h>...>0, =hfh,_;=206>0.
Usually,
h,=2""hy (veN,:=10,1,2,...})
is chosen. For every v e N, the equation (2.1) discretized is
(2.8) u, = A (u,).

In the case of Example 2.1 we may discretize by a quadrature formula. The problem
of Example 2.2 can be discretized by replacing 4 by a difference scheme. u, belongs
to a discrete analogue of B, denoted by Bg. The Banach space By may consist of grid
functions. In the case of Galerkin’s procedure Bj is a finite dimensional subspace
of By. B] = By is the respective analogue of B;.

As in Section 2.1 we define the Fréchet derivative

K,(v,) := A y(v,), K,:=K/(u,) (u,asolutionof (2.8)),
which is assumed to be defined for v, e U, = Bg, where
U, ={v,eBy: Py, U}

is defined by means of the prolongation P, : By — B, explained in Section 2.3.
The definition of K, requires u, € U,. Since Pu, — u is expected, u, € U, holds
if we assume that

(2.9) ho be sufficiently small.
K,(v,) has to satisfy the analogues of (2.4), (2.5), (2.6):
(210)  [K,(w) - K(w,)
(2.11) IK,
(2.12) (1, = K\)™"| ovonor £ C (v Ny; I,:identity on By).

sov-ner = Clo, = w| v (0o wo €U veN,),

poropy S C (VEN,),

All constants are independent of v.

2.3. Restrictions and Prolongations
The Banach spaces B; and B} (i = 0, I; v e N,) are connected by the restrictions

R,:B;, > B}, r,_;,:Bi > By (i=0,1)
with

(2.132)  |R|pope £C, [ry-i]

poopr-1 =C, R_y=r,_ R, (i=0,1)
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and by the prolongations

PV:B(V)—>BO’ pv,v-l :B:)—l _>B(‘))

with
(2.13b) ‘

Pvlsomso§ C, l

pv,v~—l”Bo"-l—>Bg" é C, Pvpv,v—l = Pv—l .

Furthermore, we assume the existence of P, : Bj — B, with
(2.13¢) R,P, = I, = identity , |P,|5v-p, £ C.

The finer topology of B, is needed for the approximation property

|
\Iv - pv,v—lrv—-l,v

(2.13d)

ByY-BgY _S_ Cl’l:,_l (a > 0; v ; 1)
and the condition of consistency
(2.14) IK,R, — RK|p,py < CH, (B> 0; veN,).

The assumptions (2.5), (2.6), (2.13c) can be omitted if (2.14) is replaced by the
relative consistency condition (cf. [10]):

”Kv—lrv—l,v - rv—l,vK ”Bl"——>BDV‘1 é Ch\[:—l .

Vi

3. MULTI-GRID ALGORITHM OF THE SECOND KIND

3.1. Preliminaries

The multi-grid algorithm depends on the choice of the step sizes (2.7), on the dis-
cretizations (2.8), on r,_, , and p,,_; and on the method used for solving (3.1)
on the level v = 0. The mappings R,, P,, P, and the derivatives K, are used only for
the theoretical discussion.

In Section 3.2 we study the one-stage iteration which uses only one auxiliary grid.
In general it is of no practical use. Nevertheless, its rate of convergence is nearly
the same as that of the final algorithm. By a recursive application of the one-stage
method the iteration ot Section 3.3 is obtained. The recursive method needs the solu-
tions of (2.8) for coarser grid widths. The algorithm of Section 3.4 provides for these
values.

3.2. One-stage Method
Let F, be the range of I, — o :
F,={f,eBy:f,=v,— A (v,) and v,e U} .
Thanks to (2.12), F, is a neighbourhood of zero. Consider the generalized equation

(3.1) v, = A\v,) +f, (fieF,)
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and denote its solution by

= (Dv(f‘) .
The one-stage iteration v{ — p%*Y is defined by
(3.2a) oD = A (0) + S,
(32b) AW = WPFYB — o (D) — f, = f/[v(v‘v"’) — AT,
(32C) U£M+I) = U(v“+1/2) p Vv l[q) v 1,V l(")) - uv—l] >

where u,_, = @,_,(0) is the solution of(2.8). In the following we justify some modi-
fications of the iteration (3.2).

Consider Example 2.2. & ,(v,) has the representation A7 102, where 4, is the differ-
ence analogue of 4. Therefore, #,(v,) can be computed exactly only if a direct
method is applicable. Otherwise, the inversion of 4, is approximated by an iterative
process as a secondary iteration. We assume

) = (1= 4) 7 90

e., the iteration

o
vopyr = Ciel, g, <1,

wh D = AW + 2,(v,)

converges to A \(v,). By A (v,, w{”, 0) we denote the result of g iteration steps
starting with w(®:

(33) A (v, Wy 0) = Aow, + 2 AX B (v,) = A (v,) + A w, — A (v,)].
£=0

Example 3.1. Consider the nonlinear boundary value problem of Example 2.2
and solve the linear problems — A, 'v2 by means of the multi-grid iteration of the
first kind. In [5] we proved ”Ai’“BOMBOv =< &% < 1 for Bg being the discrete analogue
of By = L,(Q). Thus, neither C, = 1 nor ¢, = ¢ depend on v.

Eq. (3.2¢) involves u,_;. Since this solution is not known exactly, it is replaced
by an approximation #,_,. Let

5v—1 =1,y — %v—l(ﬁv—l’ iy_1, év—l) (5\-—1 = 0)
be an approximation of the defect of ii,_, : i, | & &, _ 1(5v— 1)- Inthe case of §,_; =
=0, (3.3) yields §,_, = 0.

Finally, we note that the argument of @,_, must belong to F,_;. This is ensured
if A is replaced by ),vudi”), where 4,, # 0 is chosen suitably. The modified one-stage
method takes the form

(3.4a) WD = (00, o — £ 0,) + Sy
(3.4b) diﬂ) = Ui‘H—I/Z) — (v(u+1/2) v(u+1/2) __fv, Qv) _fv,
(34C) v(vp+1) = D(vu+1/2) )—lpv V- 1[(Dv 1(rv 1 v’lvudvu v—l) - av—}] .
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3.3. Recursive Method

Eq. (3.40) requires the exact evaluation of @,_,, i.e. the solving of an equation
of the form (3.1). Starting with #,_,, we approximate @,_,(f,_) by two iterations
of the one-stage method for the levels v — 1, v — 2 and treat @,_,(f,_,) similarly,
etc. On the level v = 0, Eq. (3.1) is to be solved by any other method. We assume
that @,(f,) is approximated by ®(f,) satisfying

(3.5) H Do(fo) — <1~>0(f0)|i300 < Cy (fo€Fy; Cysufficiently small).

The recursive method is defined by the following procedure similar to ALGOL.

procedure rm(i, v, v, f); value v; integer i, v; array v, f;

comment i: number of iterations.
(0

v:input v = v,"’. output: v = v

f:f =f,of Eq. (3.1);
if v = 0 then v : = P,(f) else

(n+i)
v .

begin integer j; array w, d; real /;
for j := 1 step | until i do
begin w:= X" (v,0 — foo,); v:i=w+ f;d :=w — A (v, w.0,):
4 := A,(d); comment choice of A = 2, depending on d;
d:=38[v—1]+2%r_,%d; w:=id[v—1];
rm(2, v — Lw,d); vi=ov— p., *(w—d[v—1])J2
end end / iterations on the level v;
The variables @[v — 1] and $[v — 1] denote @,_; and &,_,. The function ,(d)

is to be chosen accordingly to the discussion of Section 4.

3.4. The complete Algorithm

The following procedure calls rm for p = 0, I, ..., v and determines iy, iy, ..., d,.
The prescribed number of iterations per level g is i,.

procedure multigrid (v, i); integer v; array ii;
comment input: v = maximal level.
output: #[0 : v]. il u] approximates the solution u, of (2.8);
begin integer ;i; array 5[0 :v — 1];
for ;1 := O step 1 until v do
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begin if 11 = 0 then d[0] := @,(0) else
begin a[1] := p, ., *a[p — 1]: rm(i,, p, @[1]. 0)

end computation of [ u];

if ¢ < vthen 8[ 1] := a[u] — A (a[n]. a[w]. 8.);
comment This statement can be omitted if §, = 0;

end end multi-grid iteration of the second kind;

In Section 4 we analyse this procedure. To obtain a practical algorithm, we have to
add checks. For example, if one states divergence (or convergence to another solution
of the problem), the condition (2.9) is violated and one has to refine the coarsest
step size h,. Another check should terminate the calculation as soon as the discretiza-
tion error of @i zt] is small enough.

A practical choice of the first step size h, is to define h, as large as possible. For
uncritical problems this value suffices. We illustrate this comment by some examples.
In [5] we solved the linear Fredholm integral equation

(3.6) u(x) = Ajlcos (mxs)u(s)ds + f(x) (0<x<1).

[

It turned out that h, = 1 suffices for A = 1. In the case of A = 10 the step size h,

of the quadrature formula must be < 1/4, From [9] we cite the nonlinear boundary
value problem

(3.7) —du(x,y) =" in Q=(0,1)x(0,1), u=0 on I =0Q,

(cf. Example 2.2). Also in this case the coarsest grid width h, = 1/2 is sufficient.
Example 2.2 with @ = (0, 1) x (0, 1) has the trivial solution u = 0 and another
solution u > 0. The computation of the latter solution requires hy < 1/4.

For considerations about the amount of computational work we refer to [6, 7,8, 9].

4. ANALYSIS OF RATE OF CONVERGENCE

4.1. Qne-stage Iteration (3.4)

In the sequel the norm H-Hl,ov is abbreviated by
vector v{") by

|
g
1

. We represent the starting

o =v, + 4%, where v, = &,(f,) isa solution of (3.1).

Then
(4.1) PR =y AR
AT = K\(0,) 49 + AV[1, — K,(0,)] 4% + 0(|4®]?)
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and
(4.2) AW =TI, — AZT[1, — K(v,)] 4% 4 o 40+12)||2)

hold. The symbol O(+) denotes the estimation of the remainder with respect to

Define 6,y 1= ii,_y — A ',_y(i,_y),ie. d,-y = ®,_,(,_,). Then

! (sv~~1” é Hﬁv—l - uv—-l“ é C (S\'—IH (”v—l = (pv—l(o))
is valid. By definition of §,_,,

@3 R

follows.

Ql Ov—1
ALY vl”écv 18V

v-1

Sy

The Fréchet derivative of @, is @,(f,) = [1, — K, (®,(f,))]"". Using

B(0,) = 2,6 + [, = K,(@)]7 (0, = ) + 0(lg, ~ &,])
we obtain
(4.4) Dy g (v 1 0dY? +6,01) = @, 4(0,-4) =
[T-1 — Koo y(fl,- )] [Aprym10d 4+ 6, — 0, 4] +

O([ Ay @l So-1 — 0,41

From (2.10) one concludes

@5) [K.(x) Al Kesies) = Ko e = CJoe]

If o, is affine and if &#,_, = u,_, 0,_, = J,_, and ¢, = 0 are assumed, then

BOV-)BO\ S C

A(u+1) Uu+1) v, = MVAE,“)
holds with

Mv = ['Iv - pv.\'—l(I\’—l - \ 1) ! Fy—1 \( v - K ):IK

In [6] we proved

Lemma 4.1. If (2.5), (2.6), (2.7), (2.11), (2.12), (2.13a—d) and (2.14) are valid,
then the estimate

vl Bov—Boy = ChY, where y:= min (o, ),

holds. Therefore, convergence follows from (2.9).
In the general case the estimates (4.1)—(4.5) yield
(4.6) 490 = c{[n + c& + |o,- IH + A +

by-a} -

o

- 2v-1
+).v,, C,_ &%
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Note 4.2. Let all the assumptions of Section 2 be valid. If C &%, !fv [, i(‘i‘,_lif,and
“A(VO)“ are sufficiently small, the argument of ®,_, in Eq. (3.4c) belongs to F,_,.
Therefore, the estimate (4.6) holds. The iteration (3.4) converges to ¥, with

), where J,, = min
14

)
L] -

— -1 Ov-1
- 0(;°mincv— lgv -1

(sv—lr

]

v Uy

is characterized by

5,

A suitable choice of ¢,, 0,
(473) (Sv g Ch'v’(n z y) > ;'v/t g 'lmin > 0 >
(4.70) Cyel < Chl, C 7! < & dia-

We recall that y > 0 is defined in Lemma 4.1.

Note 4.3. If (4.7a,b) and | f,
(4.6) |40 = ] + |4
I

{ < Ch? hold, the estimate (4.6") follows:
Z o+ ehl].

< 2¢. implies f, € F, for all

Note 4.4. There exists a number ¢ such that
v e N,y. Asuitable choice of 4,, is

(4.8) Ayu & min (Ch_y, &)/

Then the arguments of ®,_, always belong to F,_,. Moreover, their magnitude is
less than Chl_,. The assumption |f\, < Ch} implies A, Z Jmin > 0 as required
in(4.7a). It is evident that A,, allows an estimation of the iteration error, if “ Foe1.4d0]
is replaced by C[jdi”) If l|1‘v~1‘v(l(v“’ is too smali, Eq. (3.40) can be omitted. If

Hd(v”)H is small enough, the iteration can be terminated.

. (1)
Fy—1 .\'dv

4.2. Recursive Method rm

The recursive iteration can be obtained from (3.4) by substituting @,_, by &,_,,
where ®,_, is defined as follows. &, is mentioned in Section 3.3. &,(f,) (1 = 1)
is the result of rm(2, p, v, f,) with the starting vector v := #, (i.e. two iterations
of (3.4) with &, _, instead of ®,_,).

By induction we show:

Lemma 4.5. Under the conditions of Note 4.3 and with )., from Note 4.4, the
following estimate holds:
(49) H (pv(f\) - (i)’v(fv) fv“ + Sh:{] '

Proof. (4.9) follows from (3.5) for v = 0. Assume that (4.9) holds for 0, I, ...
.., v — 1. Replacing ®,_, by &,_,, we obtain the additional term C{n}’[[4{"| +
+ [|6,-4]]] + £h?} on the right-hand side of (4.6’).

< C[hY

Then
’A(‘,O)H g C.'fv - (5\‘! g C/[ fv + h?,] ,S__ C”hz’,,

“A(v")H < C{hﬁHA(v“‘l)H + eh’l + hiy[HA(v"_”H + Ch'j,l] + .ch'}_,}
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yields

n
[49] = ¢ {hfy”fv” + [e+ (Chy +¢) (Il}—11> /z'j} .
IV
The inequalities Chy” < ¢ (cf. (2.9)) and h,_,/h, < 1/ imply (4.9)). u

Note 4.6. Under the conditions of Section 2 and (3.5), (4.7), (4.8), the estimates
£ £ Chl and 49| < Chy imply

(&.10) Jag0] < [ 4y

| + eht].
4.3. Complete Algorithm multigrid

In the procedure multigrid p, ,_, ii,_; is used as the starting value for u{”. The
difference of p, ,— %, and u, consists of a discretization error and an approxima-
tion error of p, ,-. Assume that the first crror is of order O(h,‘i), while the second
is O(h%). Usually a = « holds (cf. (2.13d)). Therefore,

(4.11) |ty = Pus—ritys | £ CLhy + i + |0, ] < Crmgin@em
(”u = (Pu(o))
(cf. (4.7a)) is the error estimate of uflo).

We want to obtain #, with ’17‘, — u,|| £ Ch} for given x and v. The usual choice
of »is » = d, i.e. iteration error ~ discretization error.

Proposition 4.7. Let % = y and assume that all the conditions of Section 2 are
satisfied. We propose the following choice of parameters:

a) i, = iwithi 2 1suchthati-y + min(d, a, %) > x;
b) ¢, and @, according to (4.7b) with ¢ sufficiently small');
¢) Ay, defined by (4.8).

Then the procedure multigrid of Section 3.4 produces i, (u =0, ..., v) with the
desired accuracy:

(4.12) lu, —d,) <cny Osp=sv).

Proof. (4.12) is equivalent to the first estimate of (4.7a) if we equate # and x
(note that % = y). We prove (4.12) by induction. (3.5) results in [fuy — [ < C".
Since €’ is assumed to be sufficiently small, (4.12) follows for u = 0. If (4.12) holds
on thelevel i — 1, (4.11) yields 47| < Chy"** Note 4.6 shows

|40 < Cyhjyrmin@an o Coehy = [Cyh% + Cye] .
Since y > 0 and since ¢ is sufficiently small, (4.12) is valid for p. u

1) The proof will show that there exists &pn,, such that & = ep,,

16+ 1]l = Ch% . with the same constant C.

and [|6,]l = Chj; imply
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We conclude the discussion with the special case of a linear equation, i.e. ", (v,) =
= K,v, + q,. In this case the result o is independent of the choice of a,(n <)
Therefore, the linear multi-grid method is obtained from the procedure rm by setting
formally @, := 0, since in this case 6, and 5, vanish. Thus, all terms of (4.9), (4.10),
(4.11) containing ¢ or ”(SuH can be omitted.

For the linear case it is not necessary to implement the nested iteration of Section
3.4. On the other hand, the use of the algorithm multigrid has many advantages.
It might be less expensive to provide for good starting values u{® by computations
on the lower levels. Furthermore, the computation may fail if (2.9) is violated. It is
advantageous to check this condition by observing the convergence during the per-
formance of the procedure multigrid.

4.4, Examples

In order to give an idea of the fast convergence of the multi-grid method we cite
the results of the problems (3.6) and (3.7) from [5, 9]. Consider the integral equation
(3.6). Discretizing the integral by the trapezoidal formula for h, = 27"h, and de-
fining P, by piecewise linear interpolation, we obtain B, = C°([0, 1]), B, = C([0, 1]
(Lipschitz continuous derivatives), and « = § = 2, hence y = 2. The observed
rates of convergence of the linear recursive method rm are listed below for A = 1, 10
and varying sizes h:

t h=1[32 h = 1/64 h=1[128  h=1/256
62,0—4 16,4  36,—5  91,,—6
810 — 3 240 — 3 610 —4 14,4

Therefore, it suffices to perform the procedure multigrid with i, = 1. The error
|1, (x) — u(x)| is almost equal to the discretization error [u,(x) — u(x)|.

The nonlinear problem (3.7) is reported in [9]. The rates of convergence of the
recursive procedure rm are approximately:

stepsize | hy =14 hy=1/8 hy=1/16 hy=1/32 hs=1/64

rates ‘ 0-06 0-008 0-002 0-0009 0-0006

Choosing g, = i, = 1 in procedure multigrid one obtains the following results
atx =y = 1/2:

he = 1/2: i, = 0-066 819 hy = 1/16: @y = 0-07787265
hy = 1)4: @i, = 0074 71505  h, = 1/32: i, = 0-078 043 72
hy = 1/8: ii; = 0077 20048  hs = 1/64: ii5 = 0-078 086 69
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(bold-face figures indicate correct digits). Quadratic extrapolation of i3, i, and s
results in 0-078 101 022 6. The corresponding computation time (CDC Cyber 70/76,
Rechenzentrum der Universitit zu K61n) amounts to 0-51 s CPU.
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Souhrn

ANALYZA CHYB NELINEARNI MNOHOSITOVE
METODY DRUHEHO DRUHU

WoOLFGANG HACKBUSCH

Mnohositova metoda druhého druhu je rychly numericky algoritmus pro feSeni
problémi, které lze formalné vyjadfit ve tvaru Fredholmovy integralni rovnice
druhého druhu. Pfiklady takovych problémi jsou Fredholmovy integralni rovnice,
specialni problémy optimalni regulace, nelinearni eliptické rovnice atd. Metoda
vyzaduje provedeni jen nékolika iteraci pro posloupnost zmensujicich se krokd.
V ¢lanku se diskutuje vliv riznych parametrii na rychlost konvergence.

Author’s address: Prof. Dr. Wolfgang Hackbusch, Mathematisches Institut, Ruhr-Universitit
Bochum, Postfach 102148, D-4630 Bochum 1, BRD.
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