Previous |  Up |  Next

Article

Keywords:
asymptotic normality of multivariate linear rank statistics; general alternatives
Summary:
Let $X_j, 1\leq j\leq N$, be independent random $p$-vectors with respective continuous cumulative distribution functions $F_j 1\leq j\leq N$. Define the $p$-vectors $R_j$ by setting $R_{ij}$ equal to the rank of $X_{ij}$ among $X_{ij}, \ldots, X_{iN}, 1\leq i \leq p, 1\leq j \leq N$. Let $a^{(N)}(.)$ denote a multivariate score function in $R_p$, and put $S= \sum ^N_{j=1} c_ja^{(N)}(R_j)$, the $c_j$ being arbitrary regression constants. In this paper the asymptotic distribution of $S$ is investigated under various sets of conditions on the constants, the score functions, and the underlying distribution functions. In particular, asymptotic normality of $S$ is established under the circumstance that the $F_j$ are merely continuous. In addition, under mild conditions, centering vectors for $S$ are found.
References:
[1] Chernoff H., and Savage I. R.: Asymptotic normality and efficiency of certain nonparametric test statistics. Ann. Math. Stat. 29 (1958), 972-994. DOI 10.1214/aoms/1177706436 | MR 0100322
[2] Dupač V.: A contribution to the asymptotic normality of simple linear rank statistics. In Nonparametric Techniques in Statistical Inference (M. L. Prui, Ed.), pp. 75-88, University Press, Cambridge, 1970. MR 0283930
[3] Hájek J.: Asymptotic normality of simple linear rank statistics under alternatives. Ann. Math. Stat. 39 (1968), 325-246. DOI 10.1214/aoms/1177698394 | MR 0222988
[4] Hoeffding W.: On the centering of a simple linear rank statistic. Ann. Stat. 1 (1973), 54-66. DOI 10.1214/aos/1193342381 | MR 0362689 | Zbl 0255.62015
[5] Natanson I. P.: Theory of Functions of a Real Variable 1. Frederick Ungar, New York, 1961. MR 0067952
[6] Patel K. M.: Hájek-Šidák approach to the asymptotic distribution of multivariate rank order statistics. J. Multivariate Analysis 3 (1973), 57-70. DOI 10.1016/0047-259X(73)90011-0 | MR 0326911 | Zbl 0254.62030
[7] Puri M. L., Sen P. K.: Nonparametric Methods in Multivariate Analysis. John Wiley, New York, 1971. MR 0298844 | Zbl 0237.62033
[8] Sen P. K., Puri M. L.: On the theory of rank order tests for location in the multivariate one sample problem. Ann. Math. Stat. 38 (1968), 1216-1228. DOI 10.1214/aoms/1177698790 | MR 0212954
Partner of
EuDML logo