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STATISTICS UNDER GENERAL ALTERNATIVES
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JaMEs A. KozioL
(Received September 12, 1977)

1. INTRODUCTION

Let X; =(X,;,...,X,;), 1 £j <N, be independent random p-vectors with

respective continuous cumulative distribution functions F ;» 1 £ < N. Define the

p-vectors Ry, ..., Ry by sétting R;; equal to the rank of X;; among X, ..., Xy,

1<i<p, 1 <j=<N. Denote by a™(-) a multivariate score function taking

values in R, and given by a™(R) = (a{"(R)), ..., a%’(R,))’; the a{™ are univariate
score functions related to generating functions ¢; by either

SRR N RV k
1.1 aM(k) = ¢ [ —— 1<k<N
X 06y 15
or ‘
(12) ‘"’(k)—Ecb(U“” , 1Sk<N,

where, for each'i, Ug,”, < ... < UY) are the order statlstlcs in a sample of size N
from the umform dlstnbutlon on [0 1] Put -

)

T zca<~>(R,) SIS

A

the ¢ bemg arbltrary regressmn constants , .
In this paper we investigate the asymptotic distribution of S under various sets
of conditions on the constants, the generating functions, and the underlying distribu-
tion functions. Sen and Puri (1968) and Puri and Sen (1971) establish asymptotic
normality of S using Chernoff-Savage (1958) techniques; Patel (1971) considers the
distribution of § in the null case when F; = ... = Fy and in the case of contiguous
location shift alteratives. We herein establish asymptotic normality of § under
extremely mild conditions on the underlying distribution functions. Our methodology
devolves from Hajek (1968), who proves similar results in the univariate setting.

326



In Section 2 are found a multivariate version of Hajek’s projection lemma and other
preliminaries. Section 3 contains the main results concerning the approximation of
the distributions of the multivariate rank statistics S of (1.3) by multivariate normal
distribution. In Section 4 we extend certain results of Dupa& (1970) and Hoeffding
(1973) concerning simple centering values for S.

2. PRELIMINARY RESULTS; HAJEK’S PROJECTION METHOD

The classical central limit theorem is concerned with sequences of sums of in-
dependent random variables, so is not directly applicable to the linear rank statistics
of interest (1.3). However, if we can show that our rank statistics are asymptotically
equivalent to such sums, then the central limit theorem may be invoked to establish
asymptotic normality. To approximate a linear rank statistic by a sum of independent
random variables, we shall utilize the concept of orthogonal projection in the follow-
ing manner: given independent random p-vectors Xi, X, ..., Xy, the set of vector
valued square integrable statistics S?* = S(X,, X,, ..., Xy) together with the usual
inner product (S, ;) = E(S}S,) forms a Hilbert space #. Any S in # can be
approximated by a statistic S belonging to the subspace ¥ of # comprised of
statistics L, where L -

@y o L= zK(X) K."‘R”‘-;»/R’P‘,

E[K{(X )Kk( X;)] finite,- 1 <j < N

and minimizing E[(S — S,) (S — So)] for S, € £. It is well known that S, a sum
of independent random vectors, will be the orthogonal projection of S on &; we
state the following lemma, that the projection may be obtained explicitly in terms of
conditional expectations.

Lemma 2.1. Let X,,X,,..., Xy be indepeﬁdgnt random p-vectors, and S =
= S(Xy, X,, ..., Xy) a (p x 1) statistic such that E[S'S] is finite valued. Let

(22) S = f E(S|X;) — (N — 1)ES.
Then ; T ‘

23 S ES = ES

24 - E[(S S) (S S)] =covS —cov§.

Moreouer if L is given by (2.1) with E[K(X;) K{(X,)] < o, 1 £ j £ N, then
(9 El(S— £)(s - Ly] - B(S - $)(s - 8)] + [ - D3 - /1.
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The projection lemma is an immediate generalization to vector-valued statistics
of the univariate projection lemma of Hajek [(1968), Lemma 4.1]; hence the proof is
omitted.

We now prove a lemma that relates conditional expectation of a vector-valued
score function of a rank vector to a probability statement. The lemma will be utilized
in the sequel, but is also of independent interest.

Let X,, ..., Xy be independent random p-vectors, possessing arbitrary continuous
distribution functions F,, ..., Fy respectively. Denote the marginal c.d.f. of the ith
coordinate variate of X;, X;;, by F;;. Define R;, 1 £j =< N, as in Section 1. Let
a;:R* > R', i=1,...,p, be arbitrary univariate score functions, and define
a:RP - R by a(xy, ..., x,) = (a;(xy), ..., a,(x,))"- Let u: R' - {0, 1} be defined
by u(x) = 1(0) if x = 0 (x < 0). Lastly, for @, p x 1 vectors, define a * B, the
Hadamard product of « and B, by a* B = (a8, @B, ..., a,8,). We now state
and prove

Lemma 2.2.
(2.6) E[a(R,)| X, = x,, X; = x5] — E[a(R,) | X, = x,] =
U(x1q — X1p) = Fyp(%1a) ay(ks) — ay(k; — 1)
~ | 4(x2e = X2p) = Faplx22) . as(kz) — as(k; — 1)
Yo X : :
2k2=2 k,=2 . .
“(xpa - xpﬁ) - F pli(xpa) ap(kp) - ap(k,, - 1)
X Pr(R, = (ky, ... k) | X, = x,, X5 < X,), forany o+p,
a,ﬂ = 11"'7N’

Mz

h

where X, < X, connotes that all coordinates of X; are less than the corresponding
coordinates of X,.

Proof. To simplify the cumbrous notation, we specify « =1 and f = 2. We
shall prove the lemma only for p = 2; it will be clear that the method of proof for
p > 2 does not involve any new notions.

k
Denote by By <<kl> Piseeos pN> the probability of (:1
2

2

bivariate trials, where at trial j the outcome 0; is one of 1 s 1 s 0 , 0) ,
1 0 1 0
N 1 1 0
Z ,and pj; = (Prl O, = , PrlO; = ,PrlO, = , Pr{O; =
i= 1 0 1
N

( ))) ince R;; = Z“(Xu — X.,) i =1, 2,itfollows that Pr( ky X, =
j=

-{(s.)

> successes in N independent

P; = (1’ 0) 0, 0)’ P2, --~,pN>, where
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(27)  pj=(Pr(Xy; < x4y and X,; < x,y), PH(Xy; < xq; and X,; > X54),
Pr(X,; > xy; and X,; < X5), Pr(Xy; > x4y and X,; > X,,))
= (Fj(xlls x21), Flj(xll) - Fj(xll’ xzx), sz(le) - Fj(xlb x21) s
1 — Fy(xy5) — Faf(x21) + Ff(x11, %21)), J=2,..,N.

or(m- (i)

k|
= BN << L> P = (1’0; 0’ 0)9 P2 =p;’p3’ ---,PN),

Similarly,

X, =x, X, = xz) =

ks

where p,, ..., py are defined as in (2.7) and
p2 =(1,0,0,0) if wu; =u(x;; —x;;) =1 and u, = u(xy; — xz5) =1
=(0,1,0,0) if u, =1 and u, =0
=(0,0,1,0) if u; =0 and u, =1
=(0,0,0,1) if u; =0 and u, =0.

From the definition of By, it is clear that

k , ki —1
By ((kl) Py = (1’0’ 0, 0)’ P2, ""pN> = By, (( ! ) P2, ---»PN);
2

combining this with the definition of p,, we have
k k - 1 ’
(2.8) Pr(Ry = 1)IX; =x; )= Fy(xy5, %21) By-1 (.} ) A
k, k, -1
= (1’ 09 0: 0); D3, ""pN)-l-

+[Fu@u)—FAmnx“ﬂBMq<Ca—1>

k, — 1

p’2 = (03 1’0’ 0)’ p3) --'apN>

+ [F22(x21) — Fa(xX115 X21)] By-1 ((kx - 1)

ky — 1
+ [1 = Fya(x11) — F22(X21) + Fa(xy4, X24)]

k, —1\| ,
BN—I(( ! > p2 = (O’an, 1)9 I’aw--,PN)

ky —2
=F , By _ 1 s
2("11 x21) N 2(<k2 _ 2) P3 PN)
k, —2
+ [Fia(*11) — Fa(x11, X21)] By-2 P3s -5 Py

k, — 1

pIZ = (01 0’ ls 0): D3, "'FPN)
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ky — 2

o [Fasln) = Fasas 2] By (l22)

V4D ""pN>

+ LU= Fialen) = Fasla1) + Folx15.%21)] By ((kl - 1>

oDy ) -
ky — 1 i173 N>
In a like manner, we find

k k, —2
(29) PR = ") Xy =x,X,=1x;)=uu,By_, ([ * |p3, ey PN
k)|t , ky — 2/ |
k, — 2\ |
+ ”1(1 — uy) By, (( ! > P, ~~-,P1v)
ky, — 1

k _ 1 I .
+ (U= u)uBy o (17 ) pss oo
( | 1) u2By 2<(k2‘2>lp3 PN>
f{ky — 1
+ (1= u)(1 = ) By << : )
Combining the last two results (2.8) and (2.9) yields
k, k, :
Pr(R, = Xi,=x,X,=x,)-Pr{R, = X, = x;
. kz kz )
= [“1“2 - Fz(x“,x“)] [BN—z (( ! ) D3, -'-9PN>> -
,, ky —2)| -
Psy---’PN)> . : . .
i 8 : j

o))

=8; + S, + S, say, where jt is implicit that the S; are functions of k,
and k,. Then - RIS S
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(210) E[a(R,)[ X, = x;, X, = x,] — E[a(R)) | X, = x,]
b A () [l () e)
(o)) (e

DA Ei 3)[ (('2: : f).i’?"“’f"«) -2 )]

ax\K2 2_
[ o) e,
\
+ _BN—Z ((N R 3) y4 ,...,PN) = BN—2<(N B 2>‘P3;~-- p )]
A ky = 1 2 \k,y — 1 >
S I A

331



From (2.11) and (2.12), we have
@. 13)

2 () 5= £ 5 = Fate] (M) 0= 0)

a(k2)
o (5 ) o)
Z Z( “’:)( )) ( (kl)—g,(k1—1)>

(57 o)
(2.14) bl (¢ s

A completely analogous argument yields
)

="1222 kiz ("2 - 1?22("21)) (az(kz) - (‘)‘z(kz - 1)) ((: §>l “,pN) ’

Finally,

ors £ 5 (M)

L (e i)]p o) = B (2 f))p om)
e (2 20 o)+ s (2 1)’,,3, )]
L (e [
*[(“‘E’;‘D-(“‘E’;‘) 0) (o ) (e v)]-
e 3 z(g’;ﬁ)s = 0, and (2.1, in light of (2.12) and (2.13), becomes

(2.113) ) E[a(R,)| X, = x4, X; = x,] — E[a(R)) | X, = x] =
g B G i i L (R 0
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But by definition of By_,, Pr (R1 - (il)
2

ki—2
X, =x,X,<x,)=By_ t
1 1 2 1) N2(<k2—2)l

Py eees pN) . Hence (2.16) reduces to (2.6), and we are done.

Theorem 2.3. Suppose that the conditions of Lemma 2.2 hold. Consider the statistic
N
S =Y c;a™(R;), where the marginal univariate scores a{™(-) are related to
j=1

generating functions ¢, : R* - R' by a{”(R) = ¢{(R|N + 1), 1 £ i £ p. Suppose
in addition, that each ¢; has bounded second derivative. Then there exists a constant
M depending only on ¢, ..., ¢, such that for any N, (cy, ..., cy), and continuous
Fy,...,Fy,

M=z

(c; — 011,

j=1

(217) E[(S - ES - i Z)(S - ES - ZN Z)] < MN!

where I is the p X p identity matrix,
N
(2.13) Z;=2z(X)=(N+ 1)—1’(;(01‘ -¢)

u(x; — Xy5) — Fyy(xy) ¢1(Hy(x,1))
u(x, — ij_) — Fy(xz) * ¢'2(H.2(x2))

u(x, = X,5) = Fplx)]  \i(Hy(x,)

and Hy(x) = 1/N}§1F,.,.(x).

dFy(x;, .. %), 1Sj<N,

Proof. Define ¢, ¢', ¢’ : R” > R” by ¢(x) = (¢4(x,), da(x2), ..., §,(x,)), and
similarly for ¢’ and ¢”. Also, let H : R” — R” be given by H(x) = (H,(x,), Hy(x,), ...

N
cooy Hy(x,))'. Then, S = Y ¢;¢(1/(N + 1) R;), and from Lemma 2.1,
ji=1
;¢ LR\ x]-NEs
T\ +1 ,

T

N N
Observe that )" ¢(1/(N + 1) R;) is a constant vector (= Y ¢(j/(N + 1) e), where
=1 i=1

(2199 §- ES‘=§E[

N

x
]
-

e=(1,1,...,1)); hence élcp(l/(N + 1)R) = E[Ji:lqﬁ(l/(N +)R)| X] =

=iEqs(l/(N +1)R)| X,] = §IE¢(1/(N + 1) R;). So, from (2.19) we have also
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1
K=1j=1 Xk] - E¢(N + 1Rl)}-
1 l 1 ‘
o i%) %] - oo (i m)

“e{elo(wiim) ) oo ()
i u(xy — Xy) — Fu(x,)\ [ & <7v+?> — ¢
Y : ; ;

R i = ) - ]\ (5) - 0 (B 5)

)

x Pr(R; = (ky, ..., k) | X; = x, X, < X;)dF(xy, ..., x,

(220) S - ES= i i (e = ¢)) {El:fﬁ (NIII Rj)

By Lemma 2.2,

But
k, 1 , k,
¢1<N+1> ¢1<N+1> - ¢1< +1) Y
K, N | N+t L N+1)
¢, ¢p L :
N + N + 1 N +1
where * ‘
C, = max sup |¢}(1)|, and each |o;| < 1. Further,
1<i<p 1e(0,1)
N N 1 ky k, ‘
Yooy |l —— | ||Pr|R= ]| X =x, X, <X,| =
k=2 kp=2 N +1 k k
p P
A
N T ——
So,
(2.21) El¢(— LR, x| Es( 1 R,
‘ N+1 7 N+1

X, =x, Xk<X:|

u(xp - ka) - Fpk(xp)
X dF(xy, ..., x,) + (N + 1)72 Cra.
The remainder of the proof is quite analogous to the proof of Theorem 4.2 of Hajek

(1968), so is deferred.
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3. APPROXIMATE NORMALITY OF A CLASS
OF MULTIVARIATE RANK STATISTICS

Let the assumptions concerning X, ..., Xy, independent random p-vectors, be as
in Section 1. In this section, we shall prove that the distributions of statistics of the
class (1.3) can, under various joint restrictions on the constants, the distribution
functions, and the generating functions, be approximated by certain multivariate
normal distributions. We start with a theorem that imposes rather stringent restraints
on the generating functions ¢;, counterbalanced by rather relaxed conditions on
Fy, F,, ..., Fyand choice of ¢y, ¢,, ..., cy. (We shall preserve the notational conven-
tions introduced in the previous section. In particular, we remind the reader that
if A, B are positive definite matrices, A > B if (A — B) is positive definite, and that
if x,y are p x 1 vectors, x > yifx; > y;, 1 < i < p.)

Theorem 3.1. Consider ihe statistic S of (1.3) where the scores are given either
by (1.1) or by (1.2). Assume that each ¢; has bounded second derivative. Then for
every ¢ > 0, there exists a constant K = K(s) > 0 such that if

(31) - . covS > Kmax(c; — ¢)*1®*P

. iSjEN
then i
(3.2) sup |Pr[d'(S — ES) < x(d'(cov S)d)'*] — &(x)| < ¢,

where d?* " is an arbitrary non-null vector and & denotes the cumulative normal
distribution function. In other words, under the hypothesis (3.1), the distribution
of S can be approximated by that of a multivariate normal distribution with
natural parameters (ES, cov S). Furthermore, the conclusion (3.2) remains true
if we replace cov S in (3.1) and (3.2) by

. N
(3.3) r = ZIE[Z"Z}} R
7=
where Z;, 1 < j £ N, are given as in (2.18).
Remark. Note that EZ; = 0,1 £ j < N since

u(x; = yy) = Fyy(xy)
: dF(yys---»¥p) = O hence Y in (3.3)

u(xp - yp) - ij(xp)

N N
is equal to ) cov Z; = cov (Y Z).
=1

j= j=1

Proof. Choose an ¢ > 0, and let d?*1 be an arbitrary non-null vector. Then by
the Lindeberg-Feller theorem, there exists A = A(¢) > 0 such that
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N
(3.4) (dzd)™' Y x*dPr(d'Z, < x) < A
J

=L J x> a@ sayr 2y

implies
N
(3.5) sup |Pr(Y d'Z; < x(d'sd)"?) — (x)| < 4e.
— 0 <x<® Jji=1
Let 7 > 0 be such that  sup |®(x) — &(x + n)| < 4¢; then (3.5) in turn implies
N

(6) s [PASAZ, < x@ZA)" £ @50 — o) < e,

—0<x<o Jj=1

Suppose cov S is such that
3.7) cov S = {[2p"?A7" max sup |${(1)| + (26~ Y2y~ 4 1) MU/2]2
i t

max ]ck - Elz} I, Masin(2.17).

1<k=N

We shall show that (3.2) will follow if we choose K = [2p"2A~ ' max sup |6t)| +
15ispO<t<i

+ (2672~ * + 1) M*/*]%. Suppose first that the scores are generated from the ¢,

by (1.1). From the definition of Z;, we have

1 |3 ,
2] = 1) 26— 00 [t = X0) = Fe)] 1010) e )
< 2max e, ~ o] sup [41()]
1<ksN 1e(0,1)
So,
(3.8) d'Z; < 2max [¢, — ¢ max sup [¢)(1)| f; |di| .
k 1<i<pte(0,1) i=1

From (2.17) and Minkowski’s inequality,
P
(3.9) [(@'zd)!* — (d'(cov S) d)'?| < M'? max e — ¢ [ d2]v2.
k i=1
Combining (3.9) and (3.7),

p
(4'2d)"* + M'? max |e, — ¢| [ Y d?]"2 2 (d@'(cov S) d)/?
1sksN i1

P
2 max [¢, — &| [ Y. d?]"? [2p*/2A! max sup |oi()] + M?].
k i=1 i t

P
(3.10) A(d'zd)'"* z 2p'* max |¢; — & [ Y. d?]"/* max sup |i(0)] -
k i=1 i t
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p )4
From the Cauchy-Schwarz inequality, p Y d; = [ Y |d,-[]z; hence, comparing (3.8)
i=1 i=1
and (3.10) we conclude that the left hand side of (3.4) is 0 for cov S satisfying (3.7).
N
But, since d was arbitrary, this implies that the distribution of ) Z; can be approxi-
ji=1

mated by that of a multivariate normal distribution with parameters (0, X).

N
We now show that d'(S — ES) is “near” d' ) Z,.
i1
N
Pr[d'(S — ES) = x(d’2d)"*] < Pr[d'y. Z; < x(d'2d)""* + n(d’zd)"/?]
j=1

N
+ Pr[|d'(S — ES = Y. Z;)| > n(d'zd)"?]
Jj=1

IIA

N
®(x) + 4& + Pr[|d'(S — ES — Y. Z))| > n(d'sd)"'*] from (3.9)
j=1

IIA

o(x) + 1o + E[d(S — ES — i 2] n(d'sd)

14
< o(x) + 3e + M max |, — &> Y. di[n*(d’Ed) from (2.17).
k i=1
From (3.7) and (3.9),
)4
(d'zd)"* + M'* max [c, — ¢|[ Y d}]"?
k i=1
. 14
< [d'(cov S)d]"? < (2e7"2y~" + 1) M"> max ¢, — | [} di]"?.
. k i=1
Hence, '
)4
n*(d’2d) < 4¢'M max lck - 5]2 Y d?
k i=1
and so
- Prd/(S — ES) < x(d'zd)"?] £ ¥(x) + 3¢

We could similarly prove the other inequality Pr[d'(S — ES) < x(d'2d)"*] 2
2 @(x) — 3¢, so that

sup |Pr{d'(S — ES) £ x(d'zd)'*] — &(x)| < 3¢.
Next, assuming ¢ < 1, we again argue from (3.9) and (3.7):

P
n(d'zd)? > M2 max e, — &| [ Y d2]"2,
k i=1
SO

p
|(@'zd)'2 — (d'(cov S)d)"/?| = M'? max |, — ¢|[ Y. d}]? < y(d’zd)"/?.
' k i=1
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Then, sup |Pr[d'(S — ES) < x(d'(cov S)d)"?] — &(x)| < &, as was to be shown.

Note that in the course of the proof we have also proved that (3.2) remains valid if
cov S is replaced by Y in (3.7).
Finally, suppose that the scores are generated from the ¢; by (1.2). But then

k
EQ(URY) = bi[-—— ) + &in>
B(UR) = ¢ <N+1> Ein
where lé-‘-Nl < CN™!, and C is a constant that does not depend on i or N. It follows
that
E{[(S, — ES,) — (S, — ES;)][(S, — ES,) — (S, — ES,)]'}

N
< CPN_I.ZI(CJ' _ E)z ®°*P ,
j=

where S,(.S;) connotes the statistic S of (1.3) with scores generated by (1.1) ((1.2)).
Thus S; — ES, is equivalent to S, — ES, in asymptotic considerations. This com-
pletes the proof.

We now prove a version of Theorem 3.1 that is useful in situations in which the
distribution functions of the random vectors are ‘‘almost identical”, in the sense of
(3.12). In particular, the following theorem will yield the approximate null distribu-
tion (that is, under the hypothesis F; = F, = ... = Fy) of the statistic S of (1.3)
as an immediate consequence.

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Define

W, = §(F (X)) Foi(Xaj)s oo Fof( X)) s G =1,2,..,N
Vi =(c; =)W,

v =¥ = S B[V, - EV) (¥, - EV)].

Then for every ¢ > 0 and { > O there exists a § = 6(8, C) > 0 such that if

N
(3.11) Y (c; — 8?2 > 67" max(c; — ¢)?
i=1 1SN
(3.12) max (F,(x) — F(x)) < ¢
15j,ksN
xelRP
and
(3.13) cov W, > (I
then

(3.14)  sup |Pr[d'(S — ES) < x(d'¥?d)"*] — ®(x)| <&, dP*V % 0.
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That is, the distribution of S can be approximated by that of a multinormal random
variable with parameters (ES, V).

Proof. We first relate (3.13) to the positive definiteness of ¥. Note that EW; =
= EW,,j=223,...,N,and that

E(WyWey) — E(W,W,,) = jgz».{F.-l(xu)] SLFu(X1)] dF (X, X1y)
—ij@M¢ﬁ¢mnwwamL»
= J.qsi[Fl‘l(Xil)] ¢1[F11(Xu)] d[Fil,l(Xillel) - Fix,j(Xins Xu)]

+ﬁ@UJ%M®VM&M—¢ﬂMKM¢UMLM}xﬂw@mMJ

IIA

cgggm(x) — F{x)| + f{qs,.[Fu(x,-,-)] — ¢lFi(X:)]}

xeRp
&, LF (X)) dFu (X35 X ) + J¢;[F (X)) H{ el Fu(X,,)]

— LFy(X )]} dFu, (X35, X 1)
< Cimax |Fy(x) — Fj(x)| + 2CoC, max |F,(x) — F(x)|
12N 12N

X

xeRP xeR®?
< max |F(x) — Fi(x)| [C] + 2C,C,]
15j.ksN
xeRP
where
Co = max sup |¢(1)], C, = max sup |pi()].
1<i<p te(0,1) 1<isp te(0,1)
Then,
N
(3.15) ¥ =Y (¢c; — ¢)cov W,
=1

—~
o
-
|

N
¢)> cov W, + 3 (¢; — &)* (cov W; — cov W))
j=1

1%

™M = EMZ

[
1]
-

—_
o
~.
|

&)? [¢ — max |Fj(x) — Fi(x)| . (C3 + 2C4Cy) P11,
where the matrix on the right hand side is positive definite for max IF (x) — F,‘(x)!
sufficiently small.

The remainder of the proof consists of showing that ¥ is “near” ) of Theorem

3.1, so that the proof may follow from the preceding theorem. The methods are
straightforward, so are omitted.
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Remark. Suppose the assumptions of Theorem 3.2 are satisfied, and that F, =
= F, = ... = Fy. Then the diagonal elements of ¥, the approximate covariance

N
matrix of S, are given by ¢;; = (¢c; — ¢)? [o [¢i(t) — ¢:]* dt, where &, =
i=1

= [§ ¢ 1) dt. However, the off-diagonals are generally dependent upon the underly-
ing distribution functions Fy, ..., Fy: for example, assuming continuous, non-
vanishing densities, we have

E[(W; — EW,) (Wiy — EW,)] = j B(w) 6.2 Ly Fi ()]

[ ' (@] fu(Fi' (W), Fii'(2)) dw dz — $:idy,

where f;;(fy;) is the ith (Ith) marginal p.d.f. of X, and f; ; is the joint p.d.f. of X;;
and X;;. In orther words, the distribution of our multivariate rank statistic S is
generally not independent of the underlying distributions of the observations. Thus
in circumstances in which the F; are postulated equal but unknown, only the diago-
nals of ¥ — the variances of the marginal univariate rank statistics, the individual
components of § — can be calculated; the additional information — specifically, the
covariance structure of § — that Theorem 3.2 provides over the univariate asymptotic
results cannot be utilized readily.

In the next theorem, we shall relax our restrictions on the generating functions ¢;
to the situation in which they are absolutely continuous and square integrable.
Recall (cf. Natanson (1961), p. 242) that a real valued function ¢ is absolutely con-

N
tinuous inside (0, 1) if for every & > 0 there exists a 6 > 0 such that [} |¢(b,) —
k=1

— ¢(ak)|] < ¢ for all numbers ay,by,...,ay, by where 0< a; < b; £a, <
N

<b,£..=Zay<by<1,and ) (b, — a;) < 8.1t sa well known fact (Natanson
k=1

(1961), p. 246) that if ¢ is absolutely continuous in (0, 1), then ¢ is of bounded varia-
tion; hence ¢’ exists, is finite almost everywhere, and is integrable on (0, 1). However,
the limit of ¢(t) as t — 0 or ¢ — 1 may not exist or may exist, but be infinite.

Theorem 3.3. Consider the statistic S of (1.3), where the scores are given either
by (1.1) or by (1.2). Assume that each ¢, satisfies ¢ (t) = ${ (1) — ¢$¥(1),0 < t < 1,
where the ¢(i"'), 1<i<p, m=1,2, are non-decreasing, square integrable, and
absolutely continuous inside (0, 1). Then for every ¢ > 0 and { > O there exists
No = Ny(e, {) such that if

b

(3.16) N > Nz, )

and

(3.17) : ' cov.S > (N max (c; — ¢)* I
15jSN '
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hold, then (3.2) obtains. That is, S can be approximated by a multivariate normal
distribution with parameters (ES, cov S). In addition, as in Thoerem 3.1. cov S

in (3.17) and (3.2) may be replaced by X of (3.3).
Proof. Lete > 0,{ > 0 be éiven. Choose f > 0 and # > 0 such that

(3.18) sup [#(x) — ®[(x = B) (1 + n)"']| < e

and let « > 0 be such that
(3.19) « < {p~' min (%, 45%)/84 .

From Lemma 5.1 of Hajek (1968), we can decompose ¢ (1) = (1) + (1) — ‘cﬁ”(t),
0 < t < 1, where y;is a polynomial, t{" and 7{*) are non-decreasing, and [ [$"(¢)]* .
.dt + .[o [TSZ)(I):P dt < 4a. Denote

2(%) = (ra(x2)s oo %))

t®(x) = (x(x 1) LT¥(x,) k=1,2

S, =Ye, R,
jglcjx (N +1 ]>

Y 1
— Y ep® (J R,.> k=1,2.
i=1

N +1
Then § = S, + S; — S,. Now, let d?*V be a non-zero vector. Then

(3.20) |[var d'S7"/% — [var @'s,]"?| < [var d'(S — S,)]'*
< [vard'S ]2 + [var d'S;]"? .

Denote by T® = {1} the covariance matrix of S, k = 1,2. Then by Hajek’s
variance inequality [(1968), Theorem 3.1]

N 2
1
19 < 2 max(c, — &)Y | [——) .
1§j§1v( =9 = N +1

var 'S, < p(d'd)21 max (c; — ¢)* max {i I:rﬁ."’(j-v—i—l):r}.

15j=N 1=igp (Jj=1

Hence,

Consequently,
(3.21) [var d's,]1/? + [var d'S,]"/?

; 271/2
< P2 a2 (21)1/2 = ax (1)( J
< pl(d'd)'? (21) l?}a;]c, g {LIEK”ZI[ N 11

N J 271/2
[ 2 [ ()] ]
15isp /1 N+1
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N . 2
< pY¥d'd)"? (21)"? max ]cj - E] 2172 { max I:z [ i (-—L )]
1<jsN

[1<ig,i25p | j=1 N +1

N @ ] 2 1/2
+ A .
ARl
But for non-decreasing t;,

(3.22) i [ (N + 1)]2§ 2N j:[r,.(t)]z ar,

and by construction of ¢’ and (¥,

(3.23) J 2] at + J [*¥(1)]* dt < « for any choice of i, and i, .

Combining (3.21), (3.22), (3.23), and (3.19), we have

(3.24) [var @'8,]"* + [var d'8 ]2
< pUA(da)r? (42)1/2 max ‘cj — 5| (2Na)'/2

< (d'd)"* max Ic - c| N”ZC“Z min (n, 1pe'/?) .

1555
But if (3.17) is satisfied, then
(3.25) |(var @'8)'/2 — (var d'S,)"?| < [var d'(S — S,)]"/?

< [d'(cov S) d]""? min (1, 1pe'/?) .

Let K,,,, = K;,5(x) be the constant, the existence of which is established in Theorem
3.1. (The Xi> being polynomials, have bounded second derivatives; thus Theorem 3.1

can be applied to S,.) Put Ny(e, {) = (1 — 1)”? {7 'K ,; then from (3.25),
vard'S, = var d'S[1 — min (1, 18¢'/?)]?

(this follows from the fact that if |a — b| < ca, then b > (1 — c) ). So cov S >

> (N(E, C) max (c — ¢)* I implies cov S, > Kl,z, max (¢; — ¢)* L
=js 1SjEN
Argumg as in the proof of Theorem 3.1, we have

Pr[d'(S — ES) < x[d'(cov S)d]"/?]
< Prd'(S, — ES,) < (x + p)[d'(cov S)d]"?]
+ Prl|d'(S — ES — S, + ES,)| > p[d'(cov S)d]""*]
< Pr[d'(S, — ES,) < (x + B)(1 — n)™! [var d'S,]"?]
+ [var d'(S — S,)] [f*d'(cov S)d]™!
SH(x+B)(L—n7")+ie+ie=s d(x)+e.
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Similarly, we could prove the opposite inequality
Prd'(S — ES) < x(d'(cov S)d)'/?] =2 &(x) — &; this establishes (3.2).

The version of the theorem in which cov §'is replaced by X may be shown by means
of a decomposition of X corresponding to the decomposition ¢ = y + ¢V — (2,
Define Z,, 2, and X, by (2.18) and (3.3) wherein ¢ is replaced by x, ¢V, and ©*
respectively. Then

|(@'zd)'? — (d'5.d)"?| < (d'2,d)'? + (d'Z,d)">.
Utilizing a univariate variance inequality of Hajek [(1968), eqn. (5.37)],
[(a'zd)'? — (d'2,d)""*]* < 8pN max (c; — ¢)* o(d'd) .
15jsN

Then for « sufficiently small, I(d’Xd)”2 (d'z, d)”2| can be made negligible in com-
parison with CN max (c, — ©)*(d'd). As seen in (3.9) and (3.25) both |[var d’S,]"/* —

— [d'z.d]"?| and I[var d'S]"* — (vard'S,)'?| are suitably bounded. The dif-
ference |(d'zd)'/* — (d'(cov S) d)1/2| is thus negligible with respect to (d'Zd)'/? if
Z > (N max (¢; — ¢)*I and N is sufficiently large.

1<jsN
We have implicitly assumed in the above derivation that the scores are given as
in (1.1). But if (1.2) obtains, we could argue as in the proof of Theorem 3.1, with the
N

aid of the inequality Y [E¢,(UY;)]* < N (g [¢4(¢)]* dt, valid for all i.
=1

Remark. In anticipation of section 4, we note that if the scores are indeed given
by (1.2) where the ¢; are square integrable and absolutely continuous, then

N
S Ia(i")( 7) = & ])I = 0(1), for all N and i. This observation, together with Theorem
i=1

4.2, yields a different proof of the assertion that Theorem 3.3 remains valid when the
scores are related to the generating functions by (1.2). Indeed, from the results con-
tained in section 4, it is sufficient to prove the theorems of this section merely under
the assumption that the scores are related to the generating functions by (1.1); as
we shall see, the theorems all remain valid if (1.2) instead obtains.

As we had done with Theorem 3.1, we now specialize Theorem 3.3 to the situation
in which the distribution functions of the random observations X, X,,..., Xy
are “nearly identical”. The following theorem is especially useful (as is Theorem 3.2)
in determining the null distribution of .

Theorem 3.4. Let the assumptions of Theorem 3.3 hold. Define V;, W;,1 < j < N
and ¥ as in Theorem 3.2. Then given any ¢ > 0,{; > 0, and {, > O there exists a
5 =06(e,{y,¢,) > 0and Ny = Ny(e, {4, ;) > O such that if

N
(3.26) N > N, Z(c -0 > ClN max (c -

j=1
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(3.27) max (F;(x) — Fy(x)) < 6
1<j k<N
xeRP

and

(3.28) cov Wy > (1

are jointly satisfied, then (3.14) holds.

Proof. The proof is an amalgam of techniques used in the proofs of Theorems 3.2
and 3.3, and that of Theorem 2.4 of Héjek (1968), hence is omitted.

4. CENTERING VALUES FOR CLASSES
OF MULTIVARIATE RANK STATISTICS

In section 3 we have shown, under various joint restrictions on the constants
Cy, Cay -.., Cy. the distribution functions Fy, F,, ..., Fy, and the generating functions
&1, @2, ..., ¢, that the distribution of the linear rank statistic § can be approximated
by a multivariate normal distribution with natural parameters (ES, cov S). Further-
more, we had indicated that the covariance matrix cov .S could itself be approximated
by another covariance matrix, the latter being characterized by its ready expres-
sibility and calculability in terms of known parameters. We have deferred until this
section, however, the analogous problem with regard to the centering values of S:
namely, under what conditions can we replace ES in the conclusions of the theorems
of section 3 by relatively simpler expressions? The question is of paramount impor-
tance in applications, because ES generally is not easily computable.

N
We remark that in the case of univariate rank statistics S = Y ¢; a(R;), the problem
=1

of finding centering constants that have simpler structure and are easier to evaluate
than ES was left unanswered by Hajek, but was subsequently investigated by Dupad
(1970) and by Hoeffding (1973). Dupac successfully found centering constants for S
under the hypothesis that the generating functions had bounded second derivatives;
Hoeffding, too, succeeded, upon imposing on the generating functions a condition
slightly stronger than square integrability, but still weaker than existence of second
derivatives. We shall provide in this section the multivariate analogs of these results.

With the following theorem, we show that Theorem 3.1 can be generalized with
regard to the choice of scores a(iN)(-) — that is, the scores need not be specified
exactly by (1.1) or (1.2) but may instead satisfy a broader relation to the generating
functions ¢;. We also provide relatively simple expressions that can be substituted
for ES in the conclusion of Theorem 3.1. The theorem is based upon Theorem H, 2.1
of Dupag (1970), in which are proved similar assertions, but for the univariate case.
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To simplify the exposition, we introduce here the following definitions:

N
@M = N71Y a™(j
L)

— —(N) =(N
- (@, g

a ELN ))'

5 seey

6 = (ala $2a"" (ﬁp)l-
Also, we shall adhere to the notational conventions adopted in earlier sections.

Theorem 4.1. Under the assumptions of Theorem 3.1, (3.2) remains valid:

(i) with ES replaced by p = Zc E@(H(X;)), if the scores are related to the

generating functions by (1.2); or
(ii) with ES replaced by p* = p + N&(@ — @), if the scores are given by (1.1),
or more generally, if the scores are related to the generating functions by

(4.1) a™(j) - (—_)’ =0(1), 1<i<p;

N +1
or
(iii) with ES replaced by p ( 1) holds and if
(4.2) = 0( max |c; — ).

1<j=EN

The next theorem stands in relation to Theorem 3.3 as the previous theorem does
to Theorem 3.1: we prove that Theorem 3.3 remains valid if the scores are related to
the generating functions by (4.1), and we provide simple centering values for S. The
theorem is a multivariate generalization of Theorem 1 of Hoeffding (1973).

Theorem 4.2. Let the assumptions of Theorem 3.3 be satisfied, but with the square
integrability condition on the ¢® be replaced by

iIA
IIA
s

1
(43)  J(¢®) =J 1121 - 2 dp() < 0, k=1,2, 1
0

Then the conclusion of Theorem 3.3 follows:

(i) with ES replaced by p in (3.2), if the scores are given by (1.2); or
(ii) with ES replaced by p*, if the scores are given by (1.1), or more generally,
if the scores are related to the generating functions by (4.1); or
(iii) with ES replaced by p if both (4.1) and (4.2) obtain.

Remark. Integrating by parts in (4.3) we obtain
1
J@J=J@@0—9FW@—Q””M.
)
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Hence condition (4.3) is equivalent to
1
J |60 =2(1 = )"2dt <0, k=1,2, 1<i<p.
0

Hoeffding’s Proposition 2 implies that, in the univariate case,

(55 = = o N max (e, 2 ([ loto) 0 - 97 arY ]

from whence arises the assumption ¢ = ¢V — ¢@, with ¢®(r) = V3(1 — 1)~1/2
integrable. Hoeffding shows that if ¢ is non-decreasing, then the condition J(¢) < oo
implies square integrability of ¢ and is implied by [ $*(?) [log (1 + |¢())]'** dt <
< oo for some & > 0. In this sense, the condition (4.17) is not much more restrictive
than square integrability.

The proofs of Theorems 4.1 and 4.2 follow directly from the aforementioned
univariate results of Dupag (1970) and Hoeffding (1973), and the observation that if

|S; — w|(var$)"* <z, i=1,..,p,
then
|Pr(S; — m) (var S)V* < x;, i=1,...,p]
— Pr[(S; — ES;)(var S)'"* < x;, i=1,...,p]|

p
< max {) Pr[x; < (S; — ES;)(var S))'/* < x; + 1],
i=1
p
Y Pr[x; — © £ (S; — ES;)(var §))"% < x;]} .
i=1
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Souhrn

ASYMPTOTICKA NORMALITA MNOHOROZMERNYCH
LINEARNICH PORADOVYCH STATISTIK
PRI OBECNYCH ALTERNATIVACH

JaMes A. KozioL

Necht X;, 1 < j < N, jsou nezavislé ndhodné p-vektory se spojitymi distribuénimi
funkcemi F;, 1 < j < N. Definujme p-vektory R; tak, Ze poloZime R;; rovno po-
fadi X;; mezi hodnotami X;,, ..., X;y, 1 £i < p,1 <j < N. Budiz a™)(-) mnoho-

N

rozmérna skérova funkce v R” a polozme S = ). ¢; a™(R;), kde ¢; jsou libovolné
i=1

regresni konstanty. V &lanku se vySetfuje asymptotické rozloZeni S pfi riiznych
podminkach na konstanty, na skérovou funkci a na zékladni distribuéni funkce.
Specilné je dokdzadna asymptotickd normalita S pouze za pfedpokladu, Ze F; jsou
spojité. Déle jsou za urcitych slabych predpokladii nalezeny centrujici vektory pro S.

Author’s address: Prof. James A. Koziol, Department of Mathematics University of Califor-
nia at San Diego, La Jolla, California 92093, U.S.A.
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