Previous |  Up |  Next

Article

Keywords:
dangerous initial diflection shape; thin elastic plate; Foeppl-Karman-Marguerre; Sobolev’s space; real separable Hilbert space; potential energy; variational inequalities
Summary:
The author introduces a global measure of initial deflection given by the energy norm. Solving the formulated minimization problem with a subsidiary condition the most dangerous initial deflection shape is obtained. The theoretical results include a wide range of stability type structural problems.
References:
[1] Bauer L., Reiss E. L.: Nonlinear buckling of rectangular plates. J. Soc. Ind. Appl. Math., 13 (1965), 3, 603-625. DOI 10.1137/0113039
[2] Sadovský Z.: Rectangular thin plate in shear - theoretical solution. (in Slovak). Staveb. Čas., 25 (1977), 3, 197-228.
[3] Hlaváček I.: Einfluss der Form der Anfangskrümmung auf das Ausbeulen der gedrückten rechteckigen Platte. Acta Technica ČSAV, 7 (1962), 2, 174-206.
[4] Sadovský Z.: Influence of initial imperfections and boundary conditions on stability of shallow shells and thin plates. (in Slovak). Research rep., ÚSTARCH SAV, Bratislava Dec. 1975.
[5] Berger M. S.: On von Kármán's equations and the buckling of a thin elastic plate, I. The clamped plate. Comm. Pure Appl. Math., 20 (1967), 687-719. DOI 10.1002/cpa.3160200405 | MR 0221808
[6] Berger M. S., Fife P. C.: Von Kármán's equations and the buckling of a thin elastic plate, II. Plate with general edge conditions. Comm. Pure Appl. Math., 21 (1968), 227-241. DOI 10.1002/cpa.3160210303 | MR 0229978 | Zbl 0162.56501
[7] Vainberg M. M.: Variational methods for the study of nonlinear operators. (in Russian). Gostechizdat, Moscow 1956.
Partner of
EuDML logo