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A THEORETICAL APPROACH TO THE PROBLEM
OF THE MOST DANGEROUS INITIAL DEFLECTION SHAPE
IN STABILITY TYPE STRUCTURAL PROBLEMS

ZOLTAN SADOVSKY

(Received December 2, 1976)

1. INTRODUCTION

The known solutions of nonlinear stability type problems show that the initial
deflection w, influences the values of various quantities characterising the state
of stress and strain of the structure markedly already at small values of load. In
general the influence of w, has its maximum near the critical load while for loads
exceeding several times the critical load it is negligible. The importance of selving
the problem of the most dangerous initial deflection shape is therefore especially
urgent in the load interval ranging from zero to at about twice the value of the critical
load. The theory presented in this paper treats the problem in the range of loads
from zero to the critical load. Since the theory is based on an examination of lineari-
zed equations and their corresponding functionals, the notions such as potential
energy or differential equation of equilibrium throughout the paper should be under-
stood to be quadratic or linear, respectively, if not stated otherwise.

The first important starting step of the theoretical analysis is to determine a set
of functions from which the most dangerous initial deflection should be specified.
This is done by defining a measure for admissible initial deflection functions wy.
Unlike the classical local measure — the amplitude, a global measure is introduced
given by the value of the bending strain energy of structure having the deflection w,,.
Now we can formulate a definition:

Definition 1.1. For the given value of the load the most dangerous initial deflec-
tion wy is that wy from the set of admissible functions having the same global
measure (the same value of the corresponding bending strain energy functional),
for which the potential energy of structure attains the minimum value.

Definition 1.1 is in a certain sense connected with the definition of a buckled state
which a “real” plate prefers, proposed in [1] on the basis of numerical solutions
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to the nonlinear problem of compressed initially flat thin plate. The authors [1]
assume that the plate always jumps from any state to the state with the smallest
value of the corresponding potential energy functional. Numerous numerical solu-
tions concerning the nonlinear problem of thin initially deflected plate in shear
obtained by the author [2] show, that the definition of the prefered state of a plate
is suitable with regard to the strength of plate.

The substantial feature of the presented theory is the introduction of global
measure of initial deflection. This allowed to prove that the use of the minimum
of potential energy as a criterion for the determination of the most dangerous initial
deflection is justified from the point of view of bending strain energy of a structure.
The bending strain energy is being understood as a global stress state measure
of buckled structure (GSSM). The solvability of the formulated minimization
problem is established and its critical points are found. The corresponding equilibri-
um configurations are compared from the view-point of potential energy and of
bending strain energy values.

For some nonlinear problems, numerical solutions are presented showing the
influence of the chosen imperfection shapes on the GSSM and on the formulated
local stress state measure of the buckled structure (LSSM). For the mentioned
special cases, the initial deflections from the set of eigenvectors with the same ampli-
tude were also investigated. The paper in this part extends the results of I. Hlavdcek
[3]

The author publishes in the paper the material essentially contained in Chapter 3
of the research report [4] but for the section 3.4.4. A talk on the present theory was
also delivered on the 17th Polish Solid Mechanics Conference in Szczyrk in 1975.

2. MODEL PROBLEM

The nonlinear problem of a rectangular thin elastic plate given by the Foppl-
Kéarman-Marguerre’s partial differential equations

(2.1) DAA(w — wo) — t[(Pey + APy i) Wyy + (Py, + 4Dy ,,) Wy —

— 2D, + APy ) Wey] =0,

2 .
o = WoxxWoyy + Wop] =0 in Q

t
— — 44D — tfw, w,, — w2
L 440 ~ ifw.om,

and by the boundary conditions

(2.2) W= Wy, = Wy = Wopu = O[r
and
(2.3) ® =9, =0
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will be used as a model problem. Here 44 is the biharmonic operator Q =
=(0,a) x (0,b) is a rectangular domain, D = Er*/(12(1 — p?)) the flexural,
rigidity of the plate, t — thickness, E — modulus of elasticity, 4 — Poisson’s ratio,
wo the initial and w the overall deflection. Parameter A is the measure of the load,
&, a biharmonic function giving the form of the membrane load of the plate, ¢ +
+ AP, — the Airy stress function. n denotes the independent variable in the direc-
tion to the normal to the boundary I'.

We linearize the given nonlinear problem neglecting the third and higher order
terms in w, w, in the potential energy functional. The corresponding equation of
equilibrium has the form

(24)  DAA(w — wo) — A[we @g,, + Wy @0 o — 2w, P o] = 0 in Q.
The potential energy of the linearized problem is up to an additive constant

b fa t (1 +
Co(Ag) = J '[ {_ 2 SE (49,)* + 22 *("’EJL) (P0,xxPo.yy — q’xz).xy)} dxdy

0J0

equal to the functional
L b D 2 ! 2 2
(2.5) 1+ = 5 [4(w — wo)]? + EA((I)OWWX + Do W, — 2P W) —
oJo
t
- 5;'(¢0..vyw<%,x + @y o, — 2¢O’xyw0'xw0,y)} dxdy,
where 4 is the Laplace operator.

According to the definition, we minimize (2.5) while introducing an auxiliary
condition

b pa
(2.6) C — -122[ f (dwo)* dxdy = 0.
0Jo

Using the method of Lagrange multipliers with a multiplier y we get the functional

b ra
=t + x[C -2—[ f (dwo)? dxdy:|.
2 0J0O

The condition that [T* should be stationary implies formally (Egs. 2.4), (2.6) and
equation

(2.7)

—DAA(w — wo) — xDAAwy + A[wo . Poyy + Wo 5y Po xx — 2Wo .y Po.xy] = 0.

Let W3(Q) denote a Sobolev space defined as the closure in the norm of W3(Q)
of the set of smooth functions defined in € and vanishing on the boundary. We

250



introduce in W2(Q) the scalar product

b pra
(w, ) = D‘[ J- Awdy dxdy, w, Y e W;(Q)
oJo
which generatesin W3(2) a norm H . || equivalent to the norm of W3(Q). In the usual
manner we define now the variational solution w, w, € W3(Q) to the problem (2.4),
(2.7), (2.2). (2.6) by the identities

b pa
(2.8) j f {DA(w — wo) A + M(Pg Wy, — Py W) ¥y +

04J0

+ (Pg Wy — Py wy) Y]} dxdy =0,

(2.9)

b pra
J f {_DA(W - Wo) Ao — xDAwo A, — }'t[((po.xxw().y - q)O..\',\'MYOA.\'_) '//o,y +

0J0

+ (q)o,yywo.x - d)O.xyWO,y) l/lo,x]} dx dy =0

which should be satisfied for all ¥, y, € W3(Q) and (2.6). Adopting the procedure
used in [5] we form by means of Riesz representation theorem operator equations
equivalent to the variational identities (2.8), (2.9). The resulting equations are

(2.10) w— wy — Adw = 0,
(2.11) —W 4+ wy — (W + AAw, = 0.

A is a linear selfadjoint compact operator acting from W3(Q) into itself [6]. Now
(2.5), (2.6) can be written in the form

1 A A
(2.12) nt = 5 [w = wol? — E(Aw, w) + 2‘(A“’0a wo)

(2.13) C — wo|* =0.

3. GENERALIZED PROBLEM

Let us assume that the expressions (2.10)—(2.13) are written in a certain real
separable Hilbert space H, i.., w, woe H, (., .) and .| denote now the scalar
product and the corresponding norm in H, A is a linear selfadjoint compact operator
acting from H into itself. In such a way we extend our investigations to the class
of problems, whose bending strain energy can be represented by one half of the
squared norm in H and the potential energy is given by (2.12) but for the constant.

In the sequel, the notation g4, ¢,, . .. will be used for the sequence of eigenvalues
and @,, ¢@,, ... for the corresponding orthogonalized sequence of eigenvectors
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of the eigenvalue problem
(3.1) Aw — ow = 0.

It is well known that (3.1) has a countable number of real eigenvalues g;, every
eigenvalue ¢; # 0 has a finite dimensional eigensubspace and zero is the only limit
point of the sequence {¢;}. We order {¢;} so that |¢,| = |¢,| = ... and if |o;| = [o}]
and ¢; > g; then i < j. The reciprocal values of g; are denoted A;. The smallest
positive A; which is the value of load parameter A corresponding to the critical load
is denoted by 4

Theorem 3.1. For every 1€ (0, A,,) there exists at least one absolute minimum w,
wo € H of the functional (2.12) under the constraint (2.13).

Proof: For 0 < A < A, we have (note that 1/1,, = max (4w, w))

lhwii=1
[wl* = 44w, w) 2 [w|* - rllez = e|w|?

and from this further the inequality

(3.2) 211w, wo, 2) = &|w||* = 2||w] ||wo| + const.

Using the space H x H of couples {w, w,} we can easily show that the functional
(2.12) is on the set G = {{w, wo} € H x H : |w| £ R, R > 0, }|w,|? = C} weakly
lower semicontinuous. This follows from the compactness of 4. According to Theo-
rem 9.2 [7] the functional (2.12) attains its minimum value on the weakly closed
set G. We choose the value of R using (3.2) in such a way that w, w, with ||w| > R,
Hwo|? £ C satisfy IT"(w, wo, 2) > 0. So the point of minimum of 17" on {w, wo} €
e H x H, }|wo|* £ Cis from G.

Now we show that the minimum is attained for w, satisfying the condition (2.13).
As0 < A < A, Eq.(2.10) with w, on the right hand side may be solved. It is

Now we show that the minimum is attained for w, satisfying the condition (2.13).
As0 < 1 < 2,.Eq. (2.10) with w, on the right hand side may be solved. It is

(3.3) w=(I—-24)""w,

Let us denote by w(w,) the dependence of w on w, according to (3.3). Clearly, for
a fixed wo, w(w,) minimizes the potential energy functional. We can easily find
such w, that IT%(w, wy, 1) < O (see the following explanation), which excludes
wo = 0 as a possible point of minimum of IT*. From the equality

M (w(kw), kwg, 2) = k> TT"(w(w,), wo, 4)

we then deduce the validity of (2.13) for the point of minimum of IT* on G, which
completes the proof of the theorem.
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We have seen that the method of Lagrange multipliers leads in our case to Eqgs.
(2.10), (2.11) and (2.13). Correctness of the procedure used is ensured by the known
Ljusternik theorem. Inserting (3.3) into (2.11) we get the eigenvalue problem

(34) [—(1 = 24)™" + 1 + 24] wo — xwo =0

with a selfadjoint and bounded operator —(I — A4)™" + 1 + 24 (I — 24)™" is
bounded according to Banach theorem). Moreover, with respect to an obvious
equality

I=(1—24)"" — JA(I — 24)™!
the operator of the eigenvalue problem (3.4) may be written in the form
—JA(I — 24)7" + 24,

which proves its compactness.

The solution of (2.10), (2.11), (2.13) or of its equivalent eigenvalue problem (3.4),
(2.13) with Eq. (3.3) can be sought in the form wy, = ¢;, w = K;; (K; is a real
number). In what follows we assume that the dimension of the subspace of the
elements we H, Aw = 0 is zero. This simplifies the argument and does not alter the
statements of the following theorems. Substituting for w and w, into (2.10) we get

Kip; = ¢; — AK;Ap; = 0,
which yields

Y
w= Q; .
(35) di— A

From (2.11) we have, when writing x; instead of y,

and further

(evidently x; <0 for 0 < 4 < )»E,). Thus the eigenvectors of the linear stability
problem (3.1) satisfying (2.13) are for every 1€ (0, A,) solutions of the eigenvalue
problem (3.4), (2.13) and together with (3.5) solutions of the conditions of stationari-
ness (2.10), (2.11), (2.13). Since the system of eigenvectors {¢;} is complete in H,
xi(A:» 2) are all the eigenvalues of (3.4). Consequently, further solutions (different
from eigenvectors of (3.1)) can be found only in the eigensubspaces of multiple x;

253



when (4., &) = x,(4;, 1), A:4; < 0. The correponding eigenvectors of (3.4) are then
the combinations of ¢;, @; which represent an arbitrary eigenvector from the eigen-
subspaces of g;, g;, respectively. Clearly this occurs when A,(2; — 1) = A4(%; — ) for
1€ (0, A,) which is possible only if (3.1) possesses both positive and negative eigen-
values. The set of such points 4 has zero Lebesgue measure.

Let us evaluate the functional (2.12) at the stationary points w, = ¥, 3||> = C
(generally ¥; = ¢;¢; + ¢;@;). Using (2.10) we have

(), i 2) = — 30w — G ) + g(wi, J)

and then

R R e ) e |

i i

vl [_ (f_’i 1)+ ﬂ lesd I = 5 wldil?.

J

The result shows that the same values of IT* correspond to the equilibrium configura-

tions corresponding to w, in the shapes of eigenvectors from the eigensubspace of y;

satisfying (2.13). Comparing the positive expressions 4,(1; — 4) we easily show

that from the set of y; corresponding to positive 4;, denoted 4;,, the lowest value

of IT* is attained for 4,, = min 4;, = A,,. From the set of y; corresponding to
i

negative 1;, denoted 4;,, the lowest value of IT* is attained for 1,, = max 4;,. Thus
i

the most dangerous initial deflection is in the shape of eigenvectors from the eigen-
subspace of x(4,,, 4) or x(1,, 4) or their combinations.

Theorem 3.2. There exists a real number C, > 0 such that for 1,0 < A < C; £
< Jep the couple (—s) wo = @, W(wo), 1||@1|* = C (¢, representing an arbitrary
element of the eigensubspace of ¢, = 1[4,), is a point of absolute minimum of the
functional (2.12) under the constraint (2.13). For A, > 0 we have C; = 1, = A
Sfor Ay < 0 we have C; = A, + 2.

cry

Note 3.1. If 2, <0 and A€ (4, + A, 4,), the point of absolute minimum of
(2.12), (2.13) is the couple (—s) wo = @,,, W(wo), 3| @.,|* = C. If 4; <0 and 1 =
= A; + 4, the absolute minimum of the problem is attained for w, in the shape
of any combination of ¢,, @,, satisfying (2.13).

Theorem 3.3. There exists a real number C,, 0 < C, £ C, < A, such that for
1€ (0, C,) the inequality

[w(wo) = woll < [[W(@1) — 4]
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is true for every wo * @y, |wo| = ”(,51” (@, represents an arbitrary element of the
eigensubspace of 0,). For 4, > 0 we have C, = Ay =< A, and for A; < 0 we have
C, = (A + A). Further, if for wo,1, Wo 5 with |wo | = |lwo ,| there exists an
interval of values A, 0 < A < C3 £ 4., on which

(3.6) 0 < IH(W(Wo.2), Wo .25 2) — IT*(W(wo 1)s wo.15 4) = 0(4?),
then there exists such C, < A, that for 2,0 < A < C,
“W(Wo,l) - Wo.l” > ”W(Wo,Z) - Wo,z“ .

Proof. Let us have an element wo € H, wy * @4, UWOH = ||@4] and let |o;| =
.. We can write

o
(3.7) wo = Elc,-cp;
with

(3.8) i:jlc,? =
and

o0
i -
A

(39) wwo) = 3,

i=

It may be easily shown that there exists a number Cy, C; = 4; = 4., if 4, > 0 and
Cy = }(der + Ay) if 4; < 0, such that

(3.10) (A = AP < (4 — A)? for A, # A, 0<i<C,.

Without a loss of generality we assume |[w,|| = I> then using (3.7), (3.9), (3.10) and
(3.8) we have for 0 < 1 < C,

[w(wo) — wol* = “ (——— - 1) ciPi

—_ “W((pl) (P1”2 )

2 © ).2
=Y = <
i=1 (A’l — /1)2

(,1
which proves the first part of the theorem.

Let wo,, = Z C1iPi Wo, = Z cs .0 (“(p ” 1) be the elements of H satisfying
(3.6) on 0 < 1 < Cy £ A, and “WO 1” _ "WO 2" The orthogonality of ¢; in H and

(49i, 9;) = 0 i

255



imply that

™8

M (w(wo 1), Wo, 15 4) = Y xict ;.
1

i

i

With a similar arrangement of nL(W(Wo,Z), Wo,2, A) we rewrite (3.6) as
1

p Z """"" N (C%.i - C%.i) = 0(’12)'

0 < L) |

2 i=1 } (}
Using the tools of the classical analysis of function series we get that the series
Z(cf P = C3) /(l(}.l — 1)) converges uniform]y to a continuous function (%)
on everymterval [0,K],K < A, and S,(0) = Z(cf',. — ¢3.))/A3. (3.6) yields 5,(0) >
> 0. Now -t

o0
[w(wo,1) — Wo,l”Z - “W(WO.Z) - Wo,ZHZ =12) — T (cli—¢3)-
i=1(4; — 4)

o0
Again we can easily deduce that the series Y (cf; — ¢3)/(4; — 2)* converges
i=1

uniformly to a continuous function SZ(/l) on every interval [0,K], K < 4., and
S,(0) = 5,(0) which proves the existence of the constant C, from the second part
of the theorem.

Note 3.2. In the case of a positive operator A the inequality ; — 2; yields
nL(W((/N)iL (ﬁi’ '1) < HL(W((Z)i)’ ('51" )”)
and
(@) = @il > [w(@)) — &l
on the whole interval (0, 4, = 1,,).

Note 3.3.1f 4, < 0 and 2 (3(4, + 4), 4,) the inequality

[w(we) — wo| < [W(@er) = Ber

is true for every wy * @ ||wo| = ||@er||- For 4, <0 and 1 = (4, + 4,), the

inequality
“W(WO) - Wo” < HW(C1¢1 + 52¢cr) — Py — C2¢cr“

holds for every wo € {¢,@; + ¢,8.}, ||wo| = [[c1®1 + ¢20.,|, Where ¢, ¢, are real
constants. The statements can be easily proved following the proof of the first part
of Theorem 3.3 with simple inequalities

(e = 22 < (2 = W2y Dy 4 Ay 3y + 2) <2< 2oy,
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or
(A =2 = = A < (A = 2)*, ;% 2, U,
;V = %(;‘1 + )'cr) )

respectively, used instead of (3.10).

It can be shown that the extremization of the values of bending strain energy
in the equilibrium configurations w(w,), w, € H leads under the condition (2.13)
to the eigenvalue problem

(I =24)7 ' [(I = 24)™" =1 — A4] wo — 9wy =0

with a selfadjoint and compact operator (compare (3.4)). The eigenvectors of (3.1)
satisfying (2.13) are the stationary points of this problem on the whole interval
(0, 4.,) and 9(4;, ) = A*(4; — 4)* represent all of its cigenvalues. Similarly as in the
case of (3.4), (2.13) further solutions can be found only in the cigensubspaces of
multiple 9; when 94(4;, 1) = 9;(1;, 1), 4,4, <0 and 1€(0, 4,), as combinations
of @; @; satisfying (2.13). This occurs now if (1; — A)* = (4; — 4)%, 1€ (0, 4,,)
(only possible if (3.1) possesses both positive and negative eigenvalues) and the
set of such points A has zero Lebesgue measure. Note that these new solutions are
no more solutions of the problem (3.4), (2.13).

For pointing out the possibility of defining inverse variational problem the author
is indebted to Dr. V. Hordk*). In this case the functional of bending strain energy
corresponding to w, (Up = %“wo”Z) is extremized under the condition of constant
potential energy.

4. SPECIAL CASES
4.1. Compressed column simply supported

The differential equation of the compressed column is
ElW, ox + APW,, = Elwg (s x€(0, a),

where I is the moment of inertia, 'P = anl/a2 and a denotes the length of the
column. Let us have

w = W.xx = W0 = wO,xx = 0’x=0,a .

The functional 11" of the problem is

nt = —;»Elf (Wex — Wo xx)* dx — ;).Pj
0

[

a a

2 ) 2
wy dx + %/.PJ‘ wg « dX

0

*) Stavebni tstav CVUT, Praha
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and the subsidiary condition on w, has the form

o= %EIJ Wo xx dx = 0.
0

Using the energy space H with the norm

Il = [%El ﬂw; dx]”z,

we easily obtain the desired operator expressions (2.12), (2.13) with a strictly positive
operator A ((Aw, w) > 0, w # 0). According to Section 3 the most dangerous
initial deflection from the set w, € H, |wo| = const has the shape of the critical
eigenvector ¢, for every load parameter 0 < A < 1; = 4., = 1. For the same A — s
the bending strain energy corresponding to w, = ¢, attains the largest value.

Let us now investigate the initial deflections in the form of eigenvectors ¢; of a per-
fect column having equal amplitudes. In order to find the most unfavourable initial
deflection we shall try to use the criterion of the minimum of potential energy.
Since ¢; = sin in(x/a) (¢; has the shape of sin in(x/a)) we get using a suitable
nondimensional form IT* of /T* that

2

(o), 01 4) = - 2o

iZ i—+ o

is an increasing function of i with the minimum A%/(A — 1) at i = 1. Further,

" Ai?
(4.1) [w(@:) — @i = const ; l_

——> const 4
b [ Andies]

is a decreasing function with the maximum const )»/(1 — A)at i = |. The absolute
value of the maximum moment used as the LSSM but for the multiplication by
a constant is equal to the norm of the resulting deflection — the formula (4.1). We
see that the used criterion showed in this case correctly the most dangerous shape
of the initial deflection, both from the points of view of GSSM and LSSM.

Note that from the set of eigenvectors {¢;} having the same value of global mea-
sure we get for w, = ¢, the largest value of the maximum moment, too.

4.2. Simply supported rectangular plate in compression

Starting from the equation of equilibrium (2.4) we express the case of compression
choosing @, = —o5y?[2, o = n’E?[(12(1 — 4*) b?). Deflections w and w, satisfy
the conditions (2.2). It can be shown that the operator A of the corresponding
operator form of functional IT" (Eq. (2.12)) is strictly positive. Thus, the initial
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deflection in the shape of the critical eigenvector (—s) ¢, is the most dangerous
initial deflection among all wy € H, | w,| = const on the whole interval 0 < 2 < 4, =
= A, giving here the largest value of GSSM of the corresponding equilibrium state.

As in the Subsection 4.1 we investigate now the set of eigenvectors of a perfect
compressed plate which have the same amplitudes. Let us denote in this case the
eigenvector functions and their corresponding reciprocal eigenvalues by ¢, and
Ay My 1, = 1,2, .. ..

It is well known that

. X .
Py X SIN Mm = sin AT = .
a

Having chosen a suitable nondimensional form IT* of IT* we have (« = a/b)

ﬁL(W((tDmn)’ D n> )») = — ;

and further

||W(([)m,,) - (/)"",H = const * 3

1 n*\? i
_+a_2 [

o m

For n fixed it follows:

lim [T = — )22,

m-* oo
im [W(@pn) — @pn| = const Aa .
m—* oo

Comparison of the limits with the m, n-terms yields

inf [T* = lim [T" = —2%%?, 0<i<2

m,n m- oo

sup ” W(P ) — </Jm,,” = lim ![w(q),,,,,) - (p,,,,,H =constix, 0<ZAc=1.
m= oo

IT" isfor 0 < A £ 2 (min Z,, = 4) a decreasing function of m and the bending strain
a

energy is for 0 < 4 =< 1 an increasing function of m.

We see that for small 1(0 < 2 < 1) there is a good correlation between I1" and the
bending strain energy (GSSM) values. Despite of this for 0 < A < 1 it is not possible
to determine from the given set the initial deflection for which GSSM and potential
energy attain their maximum and minimum values, respectively.

Let us now illustrate the usefulness of theoretical predictions of the most unfavour-
able imperfection shape on numerical solutions to the nonlinear problem (2.1), (2.2)
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with static boundary conditions assumed to give the zero membrane shear stress
along the boundary and to maintain the edges straight, and having the aspect ratio
a[b = 2. The solution of the boundary value problem is carried out by the method
of Papkovich. Representing the deflections w and w, by linear combinations

(4.2) =Y Wy, sin mn = sin nn a
m,n a
. X . )
(4.3) Wo = 3 Wo_ma SIN M@ = sin nm =,
m,n a
Tab. 4.1
GSSM /2
L_S—SM [CN Py J J (Awo) dx dy] = 04 |
0 i
WO 4 Wo ~ WO 4 ‘ Wo =~ WO A :
. X y . X . Y. X . y J X y !
A sinz—sinz ~ | sin27 —sinzn~ | sin37 —sinn~ | sin4x — sin 71 - | sin 571: - sm n !
a b a b a b 1 a b
[wolft = 0-32 ]W‘,’,l,,/’ =02 | |wol/t = 0123 { [wol/ = 008 |w0]/t = 0055 ‘
| | |
0-00593 \ 0-00997 0-00860 ! 0-00646 0-00480 !
01 1-0310 | 1-0416 1-0247 1 10128 1-:0068
i —0-000008 | —0-000020 —0-000015 | --0-000008 —0-000005
i ‘ 0-06694 0-12634 0-10599 i 0-07550 0-05375
; 10 ! 1-0371 | 10604 1-0342 i 1-0162 1-0080
| | —0-00087 —0-00258 —0-00183 —0-00098 --0-00052
\ : ; |
| 015485 i 0-34894 | 028339 | 0-18533 0-12403 |
20 | 1-0455 ! 1-1039 ‘ 1-:0547 | 1-0224 1-0100 l
| I —=0-00410 | —001456 [ —000988 —0-00482 —0-00239
\ 0-45851 | 1-3163 1-2548 0-65908 0:35694 5
L 40 | 1-0560 1-3656 ‘ 1-2315 1-0591 1-0181
% —0-02426 [ —0-14709 | —0-10145 —0-03496 -0-01381
;  46467%) | 34240 45516 | 44274 26310 |
. 80 | 2-0270 ; 1-8833 | 2-1037 1-7202 1-1992 ‘
‘ | —14122 L —1:7755 L 21647 | —11258 —0-25928 |
| { | | |
| H
|
L Wi Wi W2y Wa3 L W3rr Was Warr Way Wsir Ws3 :
l Wis: Wapr Was: Worr 1 Wase Was- Wsse 3
W33s Wsy’ We3' Wic,t | f

*) Another branch of solutions.
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Tab. 4.2

SSM

c :
LSSM max |wq|/f = 0-2 |
) Y f
]‘ WO S ‘ Wn 3 } WO =1 }‘ W() X E wo I3 :
LA X v x .y Xyl x vy _x .y
| sinm-sinz>  sin2r —sinz = | sin3x ~sinz>=  sindz ~sinz > | sin57 = sinn - |
| a b | a b a b | a b a b
| i ] , , -
| 000392 0-00997 001370 | 0-01566 0-01674
Lol 10129 1-0416 1-0641 ‘ 1-0777 1-0858 ‘
| —0:000003 ~0:000020  —0-000038 | —0-000051 --0-000059
: | 0-04509 012634 | 016658 0-18033 0-18536
| 10 | 10160 1-0604 i 1-0872 10968 11005 |
| -—0-00037  —0-00258 --0-00470 | —0-00587 -.0-00649
'j L0011 0-34894 | 0-43082 0-43040 041943
L 20 | 10209 | 1-1039 1 1-1333 | 1-1289 1:1224
| i —0-00177 | 001456  —-0-02469 002826  —0-02953
034132 1-3163 15123 1-2945 1-1101
40 = 1-0345 ; 1-3656 ‘ 1-3836 12637 i 1-1916
% L 001147 --0-14709 --0-20428 018021 ©  —0-16004
| N |
1 4-6405%) 34240 44929 46250 3-9507
| 80 [ 2:0087 ; 1-8833 ‘ 2:1772 1:9502 : 1-5987
| —1-4403 L 17755 —2:5692 --2:0703 1-4056

*) Another branch of solutions.

the equation of compatibility is solved exactly and the first of Egs. (2.1) is then
treated by the Bubnov-Galerkin’s method. The nondimensional values of GSSM
chosen as [|w — wo|/Cy, Cy = 24ab(1 — p?)[(En*®) and of the nondimensional
energy Q = 2CyQ/n? are given in Tabs. 4.1 and 4.2. It is Q = I1 — Co(Ad,), where
I is the nonlinear potential energy of the plate. Cy(A9,) is a constant given in Section
2. The initial deflections having the shapes of eigenvectors ¢, ¢,y, ..., ¢s, are
assumed to have the same global measures (||wo|| = const) — Tab. 4.1 or the same
amplitudes (max ]wo(x, y)[ = const.) — Tab. 4.2.
X,y

The values of LSSM defined as the rate of increase of the maximum membrane
stress intensity of a buckled plate in comparison to its ideal flat equilibrium con-
figuration are presented, too.

Noting that 0 < 4,; < A3; < 4y, = 447 < A5, we see from Tab. 4.1 that GSSM
values behave in a fairly good accord with the predictions of the theory in the whole
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undercritical range of load (4., = 4,, = 4). At the same time, the comparison of
energy gives us also a useful information about the maximum value of LSSM. When
the chosen w, have the same amplitudes (Tab. 4.2), the predictions of the linear
analysis were confirmed, too. Note that for 0 < A < 1 the values of LSSM behave
with the increasing number of sine waves of w, like the values of GSSM. In the last
row of Tab. 4.1 the coefficients w,, are listed indicating the coordinate functions
used in (4.2). The values presented in Tab. 4.2 were computed with the same appro-
ximation of deflection w.

4.3. Simply supported rectangular plate in shear

A special case of the problem (2.4), (2.2) is being investigated when @&, = —o.xy.
As can be shown, the coefficients A; of the corresponding eigenvalue problem of
a perfect plate occur in couples having the same value except for the signs. This
implies that 4, = 2., and then according to Section 3, the critical eigenvector (—s)
@, represents the most dangerous initial deflection shape from all w, € W3(Q),
[wol|| = const on 0 < A < 1., maximizing here the bending strain energy value.

Unfortunately, we have no explicit forms of eigenvectors for an analysis of the
equiamplitude set of initial deflections having the shapes of eigenvectors of the perfect
plate problem. Thus using the Bubnov-Galerkin’s method with w in the form (4.2),
approximate solutions to the eigenvalue problems were computed. The eigenvectors
¢; of a square plate in each of the four classes of symmetry were approximated by
72 coordinate functions. Then the values of IT"(w(¢;), @, 1) were computed for
various values of 2. The case of a rectangular plate with the aspect ratio a/b = 2

Tab. 4.3
alb = 1. 1y =l ==9-325, max|g;|/t=1
x.y
P o I N
| Number of eq. | CulT oy, | |
! Number of coor. ‘ P Type of ¢, ?i A) | A=10
| func. | ! LA=01
i 42/72 9325  m 4 n==evenn, Wy, = W, | —02373115-5 1 —0-26297, -1 ‘
‘1 42/12 2481 m oo evenn, Wy, = w,, | — 018838451 01955001
‘ 36/72 32:27 m - np==evenn., w,, = —w,, ! —0-38521y4-3 | —0:39630,¢-1 i
36/72 60-95 | m -+ i1 == evenn., Wpn ™= — Wi ‘ *‘0‘2233110-3 »*0'2266610»1 :
36/72 11-55 | m+ n=oddn., w,, = —w,,  —0060434,, 5| —065591,5-1
36/72 2679 m-+n— oddn., w,, = —w,, —028019, .\ 028997 4.,
36/72 4419 Im-n= oddn., w,,== —w, .| —0-20900, , - [ —0-213365¢9-1
36/72 3066 m -+ ne==oddn, w, = w, . —019723 5 —0:20322, -1 !

! a o o |



Tab. 4.4
alb = 2, Ay = A, == 6547, max |¢;|/t = 1

x,y
SO R R | |
Number of eq. | ; CylT" (o), | |
' Number of coor. j 2 | Type of ¢; | ;A | A= 10
' func. i | A= 01 *
o N R
i | ! | !
‘ 33/33 . 6547 | m+n=evenn | —076803;9-3  —089264;-1
33/33 9-941 m+n=evenn. | —083088 5-5 = —0:91452,5-,
33/33 17:18 m+n=cvenn. | —078989,5-3 | —0-83384,9-,
33/33 2517 mnevenn.  —108219g-3 | —112248;4-1
‘ 33/33 | 2784 | m+nm=evenn. = —0-53580;9-5 | —0-55377;9-1 |
i 33/33 | 29-68 m-+ n= evenn. —1-283839-3 | —132412,4-1 |
\ 33/33 4036 | m-+n=evenn.  —070911;9-5 = —0:72533;4-,
| 35/35 L6575 m+n=odd.n. = —186487,5-s | —2:16594; -1
! 35/35 © 11325 m+n=oddn.  —1-563874-5 | —170018,4-1
| 35/35 18-790 m -+ n = odd n. —1-18368y9-3 = —124356,4-1 |
: 35/35 25-560 ni+ n = oddn. —1:01131 ;-5 | —1-04836,0-1 |
{ 10 | 10 |
! 35/35 28-460 m+n=oddn. = —097549,,-5 | —1-00746,5-, |
! i 10 | 10 |
| 35/35 30205 | m+ n= oddn. —0-85410,5-3 | --0-88042 -,
|

was treated while using 33 and 35 coordinate functions. The most important of the
results are presented in Tabs. 4.3, 4.4. We see that in both cases the smallest value
of IT* is attained for w, in the shape of the eigenvector ;.

For a square plate with wy = ¢, wy & ¢ and

. X . y
(4.4) Wo = Wo,qq Sin 7t =sin =
a b

the nonlinear problem (2.1), (2.2), (2.3) was approximately solved. Assuming the
deflections w, w, in the forms (4.2), (4.3) and the function ¢ according to [2]

(4.5)
o- Y o, [cos ¥ = eos(i = (<1) ;ﬂ I:cos w2 = cos (1 = (~1)) EX],

r,s>2 Z

the unknown coefficients w,,, @, were determined from the conditions of ortho-
gonality of the coordinate functions used in (4.2), (4.5) to the first and the second
equation (2.1), respectively. In the case of w, given by (4.4) and w, = ¢, 25 + 28
and in the case w, & @3, 19 + 25 coordinate functions were used. The eigenvectors
¢, @5 were approximated by the same functions as w. The results are shown in
Tabs. 4.5, 4.6. LSSM and Q are defined like in Section 4.2. Further solutions to the
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Tab. 4.5

—5-1221 [ —6-3454

GSSM D[t 1/2 |
LSSM I:CN~J. J (4wgy)?* dx dy:] = 07 |
0 ?JoJo |
“,_“ - S — - . —_ - :
Wo Wy R @y Wy R @3 ;
Y/ sin 7 p sin i x ;
| |
i [wol/t = 07 [wol/t == 0-49 l [wol/r = 0-248
| T S ' |
| 0-06072 007292 005967 |
0932 1-0178 | 10417 | 1:0226 |
‘\ —0-00074 ~0-00103 ~0-00068 |
| | | ‘Y
1 | 0-39986 | 0-56538 ; 043649
466 1-0404 1-0825 | 1-0411
‘\ —0-02288 ~0-04140 -~ 002534 |
| | | l‘
; 1-6675 ! 2:0926 % 1-6363
o932 | 11555 | 1:2281 * 111201
! | ~020223 | -~ 037629 —0-21296
| ! |
| ! |
" T 4-4746 | 4-8481 : 41813
1398 14132 ! 1-4848 | 1-3161 :
—1:3175 \ —1-9251 —1-1911 |
! %
81737 | 8-3762 ‘ 7-7651 |
1864 1-7370 3 1-7996 [ 1-5944 :
i —4-4466
|

nonlinear problem of a rectangular plate in shear are given in [2] (a/b = 1, 2, 3).
The results underline the role of the minimum potential energy criterium.

5. CONCLUSION

The above presented theoretical results show that the set of eigenvectors of the
linear stability problem is characteristic set of initial deflection shapes of the corres-
ponding imperfect problem. The initial deflections having these shapes and the
given value of global measure (the given value of energy norm) represent the common
stationary points of potential energy and of bending strain energy functionals extre-
mized on the set of admissible initial deflections w, € H, ||w,| = const in the corres-
ponding equilibrium configurations for 2 € (0, Z(.,). The most dangerous initial deflec-
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Tab. 4.6

i GSSM

LSSM ! max |wg|/t = 0-7
o .y
i f‘ Wa X ! wWo R 9y ‘ wy A @y
i A ! Lox |
sinz— sin 7w '

| a l \
] — — S S — —
| !

006072 | 0-09894 | 0-14392 !
- 0932 1-0178 1-0771 z 1-1448 !
: | ~0:00074 —0:00200 —0-00464 |
| ‘ |

| 039986 | 071648 091294

L466 1-0404 ! 1-1357 | 1-2080
| ; ~002288 | ~007518 | —~015134 |
i ‘ 1-6675 : 23159 | 24701 ‘
" 932 | 1-1555 i 1-2912 | 1-3327 }
| ‘ ~020223 | ~0-56902 —0-88310
| \ 44746 ‘} 4-9967 ; 4-8790 |
| 1398 1-4132 ! 1-5375 \ 1-5173 |
;, i -1:3175 } --2:4201 ! —2:9570 i
| ! 81737 ! 8-4397 i §-1824
1864 1-7370 | 1-8421 ‘ 17674

, | —51221 —7-2108 } —7-6941 |

tion defined from the standpoint of stability of structure in the sense of minimum
of the potential energy contains also the standpoint of strength in the sense of maxi-
mum of the bending strain energy. The theory was applied to the column and plate
problems and illustrated by numerical results. The case of compressed cylindrical
panel was treated in Section 3.4.4 of the research report [4].

In special cases, the investigation of the equiamplitude set of initial deflections
having the shapes of eigenvectors of the perfect problem was carried out. The results
confirmed that the critical eigenvector is often not the most unfavourable initial
deflection from this set (Hlavagek [3]). However, some cases were shown in which
for a sufficiently small value of the load it may be even impossible to determine from
the given set the most unfavourable initial deflection from the view-point of mini-
mum of the potential energy value or of maximum of the bending strain energy
value.
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Sthrn
TEORETICKE RIESENIE PROBLEMU
NAJNEBEZPECNEIJSIEHO TVARU ZACIATOCNEHO PRIEHYBU

PRI ULOHACH STABILITNEHO TYPU

ZOLTAN SADOVSKY

Zavéadza sa globdlna miera zaciato¢ného priehybu w, dana energetickou normou.
Na stanovenie najnebezpecnejsicho tvaru w, sa formuluje minimalizaény problém

s vedlajSou podmienkou. Teoretické vysledky zahriiuju Siroky okruh stabilitnych
tloh stavebnej mechaniky.
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