Article
Keywords:
Love’s equation; boundary value conditions; small parameters; wave equation
Summary:
In the paper some solution properties of the Love's equation are compared with those of the classical wave equation for a certain class of boundary conditions. The method of small parameter is used.
References:
[1] Petrovskij I. G.:
Partial Differential Equations. Prague 1952 (in Czech).
MR 0057425
[2] Love A. E. H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge 1952.
[3] Brepta R., Prokopec M.: Stress Waves and Shocks in Solids. Academia 1972 (in Czech),
[4] Radochová V.:
Das Iterationsverfahren für eine partielle Differentialgleichung vierter Ordnung. Arch. Math. (Brno) 1, IX, 1973, 1 - 8.
MR 0350165
[5] Вишик M. И., Люстерник Л. А.:
Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром. Успехи мат. наук XII, 1957, 3-122.
Zbl 0995.90594
[6] Levinson N.:
The First Boundary Value Problem $\varepsilon \Delta u + A u_x + B u_y + C u = 0$ for Small $\varepsilon$. Ann. of Math. 51, No 2, 1950, 428-445.
MR 0033433
[7] Kreith K.:
Sturmian Theorems for Hyperbolic Equations. Proceedings of the Amer. Math. Soc. 22, 1969, 277-281.
MR 0244602 |
Zbl 0176.09304