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REMARK TO THE COMPARISON OF SOLUTION
PROPERTIES OF LOVE’S EQUATION
WITH THOSE OF WAVE EQUATION

VERA RADOCHOVA

(Received November 8, 1976)

Love’s partial differential equation is derived in [2], [3] by the energy method and
under the assumptions that the kinetic energy per unit of length is

() T, = bFof(u) + wR(u,)]
and the potential energy per unit of length is
(2) Vi = EF(u)?,

where F is an area of cross-section, k is a cross-section radius of gyration about
the central line.

Using in (2) the corrected form of tension we have
(3) Vi = YFu(Eu, + op’k*u,,)

and the variational equation of motion is
12 L

(4) (3J' dtj {4Fo[(u)* + u? k*(uy)?] — $Fu(Eu, + op’k*u,,)} dx = 0.
" 0

If we form variations we obtain the equation of extensional vibrations of rods in the
form

E
(5) Uyp — —Uxx — znuzkzuxxlr =0.
e

This equation differs from the Loove’s one only by the double coefficient at the fourth
derivative.

Taking in the variational equation of motion the term (1) for kinetic energy
uncorrected and the term (2) for the potential energy, we obtain the classical wave

199



equation ou,, — Eu,, = 0. Denoting ¢* = Efg, a> = p*k?, we have the equation (5)
in the form

2 2
(6) 207U e + Uy — Uy, =0
and Love’s corrected wave equation in the form
2 2 —
(7) AUy + P — 1, = 0.

As the coefficient a? is very small in comparison with ¢, we can take constants
a®, 2a* for a small parameter, consider the equations (6) and (7) as equations with
a small parameter ¢ > 0 at the highest derivative and write these equations in the
form

8) By + Uy, —u,=0.

In what follows let us compare some solution properties of the equation (8) with
those of the classical wave equation

9) u, —u, =0.
Let us consider the differential equation (8) with initial conditions
(10) u(0, x) = @o(x) uf0,x) = @,(x) if xe[0, L]
and with boundary conditions
(11) ao u(t, 0) + Bole ue(t, 0) + ® u (1, 0)] = oo(1)
u(t, L) + Bi[e uut, L) + ¢ u(t, L)] = ¢,(t) if te[0,T],

where ¢ > 0 is a small parameter and 2 >0, o, oy, Bo, Bi, T> 0, L> 0 are given
constants. We assume that the functions @o(x), ¢,(x) have in [0, L] continuous
derivatives up to the third order and piecewise continuous derivatives of the fourth
order and that

900(0) = (P6(0) = (PO(O) = (Pm(o) =0,

(Po(L) = (Po( ) = (PO(L) = ‘Pg’( ) =0,

?1(0) = ¢1(0) = ¢7(0) = ¢7(0) =0,

¢:(L) = ¢i(L) = ¢i(L) = ¢7(L) = 0.
The boundary conditions (11) can be considered homogeneous
(12) oo u(t, 0) + Bole u(t, 0) + 2 u(t,0)] =0,

a, u(t, L) + Bileugdt, L) + 2 u(t, L)] =0 if te[0, T],

because the transformation

u(t, x) = Z(tx)+-o:~<1—3——+2 )l//o(t)+—*<3——2 >1//(:)

0
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if oy & 0, «; * 0 and the transformation

xZ x2
u(t,x) =Z(t,x) + —q(t) — [— — x)p(t) if 0o =0, o, =0,
(.9 = 2(6%) + 3 a0 = (G, =) ) i =0,
where p(t) is a solution of the differential equation & p"(t) + ¢ p(t) = y(t) and
g(1) is a solution of the differential equation & q"(t) + ¢? ¢(t) = ¥,(t), transforms
the inhomogeneous conditions (11) to homogeneous conditions (12).

If & — 0, then we have the initial-boundary problem for the wave equation (9):

(10a) u(0, x) = @o(x), un0,x) = @,(x) if xe[0,L],
(12a) oo u(t, 0) + Boc? u(1,0) =0,
ay u(t, L) + Byc?u(t, L) =0 if te[0,T],

with the same assumptions about the functions ¢¢, ¢ as in the case of conditions (lO).
Since the initial-boundary problem (8), (10), (12) or (9), (10a), (12a) describes
the extensional vibrations of rods, let us consider in what follows two variants of

boundary conditions:
Op Oy \ . (1 0Y. (10
<ﬂo ﬁ1>' I:= <1 0>, ll._<0 1 (A)

Let u(t, x) be a solution of the problem (8), (10), (12) and U(1, x) that of the problem
(9), (10a), (12a). Existence and uniqueness theorems for the problem (9), (10a), (12a)
are very well known, for the problem (8), (10), (12) they are proved for instance
in [4]

To compare the solution properties of these problems, we use the Fourier method
and the method of small parameter [5], [6]. Let us assume that u(t, x) = y(x) v(t).
Then we have

(13) LA ”ru___ — - =const. if y(x)#0, ev'(r)+ c’o(t) 0.
y e + cv

Denoting the constant on the right hand side by —A?, we obtain

(14) y'+ Aty =0,
22

15 v+ — v =

(15) o

For the boundary conditions we have

(16) u(1,0) =0 = y(0) =0,
u(t,L) = 0 = y(L) = 0 for the variant I.
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(17) u(t,0) =0 = y(0) =0 _
eu(t, L) + Fuft,L) =0 = y(L) =0 for the variant II.

Hence we have the sequences of eigenvalues and normalized eigenfunctions in the
form:

(18) Iy = nr. y(x) = \/2 sin 4,x for the variant L.
L L
(19) Ay = On—i—l)f ;on(x) = \/% sin A,x for the variant 1I.

To each 4, we have the differential equation

2,
*ﬁ U(t) =0 N

(20) v'(t) +

and its solution

1+ ¢

cAt cAqt
v(t) = A, cos ——"—— + B, sin ———"——~,
9 V(U + edl) V(U + eil)

If we assume that the series

(21) \/ 2 Ysin iy [An cos— 4 psin ﬁ_]

= J(1 + e2?) V(1 + e7)

is uniformly convergent with its derivatives up to the fourth order in [0, L] x [0, T],
we can take it for the solution of the problem (8), (10), (12). From the initial conditions
(10) we obtain

¢o(x) = u(0, x) = \/% Y sin 4,xA, ,
Lnr=0

2 & ch
x) = u/0, x) = /2 sin A, xB, —————— .
o1(x) = ul0.%) \/Lngo JA+ e12)
With regard to the assumptions about the functions @o(x) and ¢,(x) we have only

one development of these functions in series of normalized eigenfunctions /(2/L).
.sin A,x; these series and their derivatives up to the second order are uniformly

convergent.
2 (* »
A, = \/~j sin 2,& @o(¢) d&,
LJo

Hence
2 L
g, = VLt k) \/% J sin 2,6 ¢,(¢) de .
ch, Ljo
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Since the series

At
(22) u(t,x) = = "Zosm AX {[I sin 2,& @o(£) dﬁ:l cos ;/(IC;’ r/{f) +

V(1 + el)) it
[ J sin 4,& @4(¢) dé] sin - NETZH)!

is majorized by the series

L

2 L 2ed . o
z sin A xj sin A, @o(&) d& + —— > sin l,,xJ. sin ,¢ @4(&) d¢
L,. 0 o Lc n=o 0

which is uniformly convergent in [0, L], (22) is also uniformly convergent in [0, L] x
x [0, T]. The assumptions imply (see [ 1]) that the series
Ant

&) L
(23) uxx(t, X) = — %- z /l: sin }"nx {[J\ sin /1"6 (po(é) dé] CcOS — ,,,C;'!,,,
Ln=o 0 (

+
1+£/1)

1+ ed?) [~ ) Aot
+ I:}/( -C;"-b—) J; sin 2,& ¢,(¢) dé] sin \Flf—l— 8/1?)}

is also uniformly convergent in [0, L] x [0, T]. The series

o0 2 L ,
(24) u(t,x) = - 2 y cAy S sin A, {['[ sin 2,& @o(¢) d5:| cos \/Cint -
€

Lnx=o01 +£/1" 0

+ [\/(,‘ i‘"ﬁ:) JO sin 4,& @,(%) dc] sin y(@%ﬂ}

is uniformly convergent in [0, L] x [0, T] because it is majorized by c?u(t, x)/e.
Similarly the series

2.8 Ay k cAnt
25) U = - ———sin A,x sin ,& @o(&) dé | cos —— +
= L nzo L+ edy {[L (%) :| Ja + 8/12)

[ e masin )

is uniformly convergent in [0, L] x [0, T]. Therefore (22) is a solution of the problem
(8), (10), (12) for variant (I) of boundary conditions.
Analogously we obtain the solution of the problem (9), (10a), (12a):

© L
(26) u(t, x) = % Y sin A,x {I:J‘ sin 4,& @o(¢) df:l cos ci,t +

n=0

L
+ [_LJ‘ sin )“né gpl(é) déjl sin C/lnt} ,
Ay Jo
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where 4, are the same as in (18) and (19). For the corrected tension we have

(27) ng_) i M osax {HLsm IE po() d ]COS _ L,,,

Ln01+£/1 0 \/(

+ [i(—l—ﬂ f sin A,¢ ¢,(&) dé] sin — A"t} ,
ch 0 +

n

and in the case of classical solution we obtain

© L
(28) a(t, x) _ 2¢? Y 4, cos A,x {[J sin A,& @o(&) dé] cos cA,t +

Y L n=o0 0

L
+ |:—1-J sin A,& ¢,(&) dé] sin cl,,t} .
Ay Jo

Since the series (25) and (27) are uniformly convergent in [0, L] x [0, T] for each
€€ [0, €0], Where ¢, > 0 is an arbitrary constant, and because all functions on the
right hand side are continuous in this domain, we obtain

lim u(t, x) = U(t, x), limo(t, x, &) = o(t, x),

=0 e—~0
so that for small ¢ > O the difference between the corrected solution and that of
the classical wave equation is very small.

To obtain the asymptotic behaviour of the solution of Love’s equation we can
also use the method of small parameter.

Theorem 1. Consider the problem
(29a) gy + Uy, —u, =0 if (1,x)e[0,L] x [0, T],
(29b) u(0, x) = @o(x), u(0,x) = o,(x) if xe[0,L],
(30) variant T :u(t,0) = Yo(t), u(t, L) = y(t) if te[0, T],

or
(30a) variant 111 u(t, 0) = o(t)  euy,(t, L) + c* ut, L) = (1)
if tel0,T],

where @o(x), @,(x)e C?[0, L], ¥o(t), ¥,(1) e C*[0, T]. Then in the quadrilateral
[0, L] x [0, T] we can write for the solution u(l, x) of Love’s equation the relation

(21) u(t,x) = e U(t, x) + ¢ z(t, x),
where a is an arbitrary constant, U(t, x) is a solution of the wave equation which
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fulfils the initial conditions (29b), the boundary conditions (30) in the variant I,
the boundary conditions

(30b) U(t,0) = yo(t), ULt L)=y,(1) if tel0,T]

in the variant 11, and z(t, x) is a solution of the differential equation z.., = 0 for
which e”*U,,,, + ¢*z,, — z,, = 0 holds. For the variant 1 we have

1

Oy )= L= - T oo + [ - Toun)] -

€

(1= 0)0,(0)+ 20,0 + 1 (L= ) () = w01}

t~i~

For the variant 11 of boundary conditions we obtain
1 e )
(32) z(t, x) = E(l —e %) {(po(x) — x @o(L) + Wo(t) — ¥o(0) +

+ 1[o4(x) — 0,(0) — x ¢i(L)] + x @o(L) cos ?/C_st +

+xﬁ(p'1(L)smit+xsm flﬁ(r)cos——rdr—
¢ Ve Ve

~eon S o[ wgam s }

This theorem implies also that

hm u(t, x) = U(t, x)

Proof. If we take u(f, x) = e " U(t, x) + & z(t, x) as a formal solution of the
equation (29a) we obtain that a(r) is a constant, U(t, x) is a solution of the wave
equation c*u,, — u,, = 0 and z(s, x) is a solution of the partial differential equation
Zyew = 0 for which e™*U,,,, + ¢*z,, — z,, = 0 holds. The relations (31) and (32)
" follow from the initial and boundary conditions.

For the solution of the differential equation (8) we can derive a similar theorem
about the behaviour of zeros as in the paper [7] for the wave equation.

Theorem 2. Let t, > 0, L, > 0. Let us consider the problem

(B) gy + Gy —u, =0 if (t,x)e[0,L] x [0, T],
u(ty, x) =0, ufte,x) =o(x) if 0<x<L.

If T > 0 is given then we can choose the function ¢(x) so that there exists a solution
of the problem (B) which has no zeros for ty < t < T. Further, there exist constants
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Ly > 0, Ty > 0 such that we can choose the function ¢(x) for which the solution of
(B) has no zeros in the quadrilateral [0, Ly] x [0, T,[.

Proof. I. Let A% be the constant on the right hand side of (13). From (13) we obtain
272
(33) T R
1 - 2%
(34) y' =2y =0,
and from the initial conditions (10) we have

u(t) y(x) = 0= 1(ty) = 0
(1) ¥(x) = o(x)

which holds, for instance, in the case v'(t,) = 1, y(x) = ¢(x).
a)
Assume that 1 — A%¢ > 0. Then we have the solution of (33)
2 —_
ot) = \/ (1 — e2?) sin h At — to)
o N 512)

and

which has no zero if t > t,.

If we choose for the function ¢(x) the positive solution y(x) of the equation (34),
then u(t, x) = y(x) vo(t) is a solution of (B) which has no zero in (t,. T) x (0, L).

b)

Assume that 1 — A%¢ < 0; then we have the solution of (33) in the form

2 — —
0y(1) = J(2%e l)sin cAt — to) .
e V(A% = 1)

If Ty = t, + n /(A% — 1)/cA, then the function v,(r) has no zero in (t,, Tp). If we
take for the function ¢(x) the positive solution of (34), then the solution u (t, x) =
= y(x) v,(r) has no zero in (to, Tp) x (0, L).

II. Let — A% be the constant on the right hand side of (13). Then 1 + A% > 0
and the solution of

2}.2
1+ 8/12

"

(1) = J(1 + 82?) gin A~ 1)

cl J +e2?)’
Denoting Ty =t + 7 /(1 + A%¢)[cA, then the function v,(t) has no zero in (o, T}).
The function y(x) = ksin A(x — x,), being a solution of the differential equation
y" + 2%y =0, is positive in (0, L) if Ly < n/A. If we choose this solution for the
function ¢(x), then the solution u(1, x) = y(x) v,(t) has no zero in (t5, Ty) % (0, Lo).
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Souhrn

POZNAMKA K POROVNANI VLASTNOSTI RESENI ROVNICE
LOVEOVY S KLASICKOU VLNOVOU ROVNICI

VERA RADOCHOVA

V préaci je porovnano feSeni Loveovy korigované rovnice s feSenim klasické
vinové rovnice a odvozeny nékteré vztahy, vyjadiujici jejich vzajemnou souvislost,
pro jistou tfidu okrajovych podminek, pfi CemZ se vychazi z toho, Ze Loveovu
rovnici lze povazovat za rovnici s malym parametrem u nejvyssi derivace.

Author’s address: RNDr Véra Holariovd-Radochovd CSc, MU CSAV pobocka v Brng, Janac-
kovo nam. 2a, 662 95 Brno. )
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