[1] J. M. Ortega W. C. Rheinboldt:
Iterative solution of nonlinear equations in several variables. AP, New York, 1970.
MR 0273810
[3] D. Chazan W. Miranker:
A nongradient and parallel algorithm for unconstrained minimization. SIAM J. Control, 2 (1970), 207-217.
MR 0275637
[4] D. M. Himmelblau:
Decomposition of large-scale problems. North-Holl. publ. соmр., New York, 1973.
MR 0456435 |
Zbl 0254.90002
[5] R. M. Karp W. L. Miranker:
Parallel minimax search for a maximum. J. of Combinatioral Theory, 1 (1968), 19-35.
MR 0220434
[6] R. P. Brent:
Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
MR 0339493 |
Zbl 0245.65032
[7] W. I. Zangwill:
Minimizing a function without calculating derivatives. Соmр. J., 7 (1967), 293-296.
MR 0234614 |
Zbl 0189.48004
[8] M. J. D. Powell:
An efficient method for finding minimum of a function of several variables without calculating derivatives. Compt. J., 7 (1964), 155- 162.
DOI 10.1093/comjnl/7.2.155 |
MR 0187376
[9] H. T. Kung J. F. Traub:
On the efficiency of parallel iterative algorithms for non-linear equations. Symposium on complexity of sequential and parallel numerical algorithms, Cornegie-Mellon University, 1973.
MR 0353717
[10] W. Miranker:
Parallel methods for approximating the root of a function. IBM J. of Research and Development, vol. 13, 1967, 297-301.
DOI 10.1147/rd.133.0297 |
MR 0239752
[11] S. Winograd:
Parallel iteration methods, Complexity of computer computations. R. E. Miller and J. W. Thatcher, Plenum Press, New York, 1972, 53 - 60.
MR 0383833
[12] N. Anderson A. Brörck:
A new high order method of regula falsi type for computing a root of an equation. BIT, 13 (1973), 253-264.
DOI 10.1007/BF01951936 |
MR 0339474
[14] F. Sloboda:
Parallel method of conjugate directions for minimization. Apl. mat. 6 (1975), 436-446.
MR 0395830 |
Zbl 0326.90050