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SVAZEK 21 (1976) APLIKACE MATEMATIKY ČÍSLO 4 

NONLINEAR ITERATIVE METHODS AND PARALLEL COMPUTATION 

FRIDRICH SLOBODA 

(Received July 1, 1975) 

1. INTRODUCTION 

In this article we will consider methods for linear systems of equations, which can 
be applied to the solution of nonlinear systems and optimization problems. The class 
of these methods includes the nonlinear Gauss-Seidel iteration. Let F : Rn —> Rn 

have components f l 5 f 2, . ..,f„, then the generalized nonlinear Gauss-Seidel iteration 
is described as follows: 

(i) Choose an index i e {1, 2,..., n) and a vector pke Rn; 

(1.1) (ii) solve f{xk - ccpk) - 0 for a = ak ; 

(iii) set xk+1 = xk- cckpk . 

For pk = ^(m odn)+i t m s reduces to the nonlinear Gauss-Seidel method. Similarly, 
the generalized SOR-Newton iteration is defined if ak is one Newton step toward the 
solution of (IT): 

(-•2) *fc+i = *fc - [fi(xk)lfi{xk)Pk] Pk • 

In (1.2) we follow the notation used in [1]. These methods exhibit only linear rate 
of convergence and the structure of the algorithms is purely sequential. In [13] 
a projection method for linear systems of equations is suggested. Let us consider the 
system 

(1.3) Ax - b 

where A is a regular n by n matrix and b is an n-vector. Let X(Q\ X 0
1 } , ..., x(

0
n) be 

n + 1 linearly independent points of the space Rn. Then the algorithm [13] is described 
by the recurrent relation 

(1.4) xf = xfli + h z l * ^ ^ 

where 
" ( i )u 

,.(0 _ v ( 0 _ V ( i - D xYli - xY-i i ~ 1,2, ..., n; k - i, i + 1, ..., n, 
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a, is the i-th row of the matrix A and b{ is the i-th component of the vector b. Let 
4 0 ) = (0, . . . ,0 ) T and 

(1.5) xp = (o,...,tk,...,oy 

where tk — 1. Let A be a strictly regular matrix, then 

(a,,».'-,)+ 0, 

the matrix of the vectors v\lli is upper triangular with unit elements on the diagonal 
and the point x(w) is the solution of (1.3). Let A be a strictly regular, symmetric 
matrix. Let x0

0) = (0, ..., 0)T and let x0
k) be in the form (1.5), then 

(Av(.,21,t;y21)-=o i-f-I. 

According to (1.5) the algorithm (1.4) requires 0(}n3) number of multiplications and 
additions. The symmetry of the matrix has no influence on the number of arithmetical 
operations, but allows to generate conjugate directions. The total storage require­
ments are less than \n2 + n + 2. Input of data is very convenient for the algorithm 
since a single row of the matrix is required by each iteration. 

In [14] a generalization of the described algorithm is suggested. Let us consider 
the quadratic function 

(1.6) f(x) = (Ax, x) - 2(b, x) + c 

where A is a positive definite, symmetric matrix, b is the right-hand side vector 
of (1.3) and c is a scalar. 

G e n e r a l a l g o r i t h m [14]. 
Let x0

0), x0
1}, , . . , x0

n) be n + 1 linearly independent points of the space Rn. 
Then the algorithm for minimization of (1.6) is defined as follows: 

(k) _ v ( k ) _ „(k) (i) (1.7) x{*> = x£>. + « 

where 
.,(0 _ (0 _ x ( í - l ) 
vi-í — xi-í x i - í 

and afl t are scalar coefficients, 

(1.8) f(x?-i + a»i-i) = min! i - 1, 2 , . . . , n ; fc = », i + 1, . . . , n . 

a = « ^ i 

It has been shown [14] that v^ are mutually conjugate vectors and at the point 
x(fl) function (1.6) achieves its minimum, i.e., the algorithm has the quadratic termina­
tion property. 
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Specia l case : Let v0
fc) = x(

0
k) — x0

0) be in the form 

vy = (o,...,tk,...,oy 

where tk = 1. Then for oc(k21 defined by (1.8) it holds 

«£>, _ *' ~ ^ ^ t-*l929...,n; k = U + l , . . . , n . 
( « I . » I - I ) 

In the next sections we shall view the algorithm (1.7) — (1.8) as an iterative algorithm 
for finding the minimizer of a strictly convex function. As is known, it is not unreason­
able to expect that any algorithm, which is convergent when applied to the minimiza­
tion of a strictly convex function and which solves the problem of the minimization 
of (1.6) in a small number of steps, will also converge rapidly towards the end in the 
minimization of a strictly convex function. As we shall see the algorithm can be also 
considered a generalized algorithm of Gauss-Seidel type. We will also show that the 
sparseness of the occurrence matrix influences the structure of the algorithm. The 
algorithm will be analyzed from the parallel computation point of view. 

2. DESCRIPTION OF THE ALGORITHM 

Let f: Rn -» Rt be a continuously differentiable strictly convex function. Let 
JC0

0), x0
1}, ..., x0"

} be n + 1 linearly independent points of the space Rn. Let x(0) be 
a starting point and let x0

k) = x(
0

0) + v(
0
k), v(

0
k) = (0, ..., tk, ..., 0) r where tk = X 

is a suitable positive real number. Then the algorithm for the minimization of f(x) is 
defined as follows: 

(2.1) A l g o r i t h m . 
Step(i): For given x0

0), x0
k) = x(

0
0) + v(

0
k) do the calculation by the recurrent 

relation 

where 

ү(fe) _ ү(fc) , „(k) (0 
л i — xi-í + a i - l w i - l 

w (0 _ „(0 /||f,(0 || „(0 _ ү(0 _ ү ( Ь l ) 
Wi~l - Vi-ll \\Vi-l\\ 9 Vi-Î — Xi~í Xi~í 

and a'^j is defined by 

(2.2) /(xf_\ + aw{2,) = min! i = 1,2, ..., n ; k = i, i + 1 , . . . , n . 

« = « . i 

Step(ii): Replace x(
0

0) by x(
n

n) and go to Step(i). 
Comment : k = i it is more advantageous from the computational point of view 
to consider 

ү(0 _ ү ( - - П , J i - l ) (i) 
x i — x i - i + a i - i wi-i 
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where aJL"^ *s defined by 

f(xt'i'} + avv(/21) = min! . 

a = a (^X ) 

According to the choice of A, which defines the vectors v0
fc) in Step(i), we obtain the 

following algorithms: 

A lgor i thm I: X = ft, where h is a constant; for example h = 1 (0.5). In this 
case the vectors w\ll} need not be in general normalized. 

A l g o r i t h m U: X = min (ft, ||x(n) - x0
0)||). 

A l g o r i t h m III: X = min (ft, |/(x(w)) - /(x0
0 )) |) . 

A l g o r i t h m IV: X = min (ft, ||/'(40))||)» where/'(x) = (d//3x„ ..., d//dxB). 

Theorem I. Let f:Rn~^Rl he a continuously differentiable strictly convex 
function which satisfies 

(2.3) lim f(x) = + o o . 
||x||-ao 

Then for any x0
0) e Rn the algorithm (2.1) is wc// defined and x„n) converges to the 

unique minimizer off(x). In order to prove this theorem we shall use definitions and 
theorems presented and proved in [1]. 

Definition 1. If f : D c Rn -> R. tfte/t any nonempty set of the form L(y) = 
= {xe D \f(x) _ y}, y e Rj is a /eve/ set O// 

Definition 2. A sequence {p{k)} e Rn, p{k) =j= 0 is uniformly linearly independent 
if there exist a constant y > 0 and indices m = /?, k0 = 0 sucft that for each k = k0, 

(2.4) max {|x7>(-/')|/||x|| Ip^H |j = k + 1, ..., k + 777} = y , Vx e Rn, x + 0 . 

Let w0
1}, w\2), ..., w ^ j be vectors defined by the algorithm (2.1). In each cycle we 

obtain a new set of these vectors. Let us denote 

(1 <\ r » ( s + 1 ) — n^ n^ — u,(s)(modn)+l c _ n j 
{Z.5) p - q , q - ws(modn) , s - V, 1, .... 

Let k0 _ 0. The sequence { ^ a l e iRw, p(/c) + 0 defined by (2.5) has the property 
that for k = k0, pu\ j = k+l,..., k + n are linearly independent vectors and after 
a rearrangement the matrix of these vectors is upper triangular with A/Hv-'JJ on the 
diagonal. Since the vector v\l±, is a linear combination of the vectors v(

0
/c), k = 1, 2, ... 

..., i [13] and L0 = L(/(x0
0))) is compact according to (2.3), it follows that ||v(l2, || _ 

= KX and A = flv^ll, K > 0, so that lj\v^l, || _ l/K = c > 0. 

Theorem 2. Fftc sequence {p(k)}^u p{k) * ° de/ned by (2.5) is uniformly linearly 

independent. 
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Proof . Let m = n and k0 = 0. Since the vectors p(j\ j == fc + 1, . . . , fc + n for 
each k = 0 are linearly independent vectors and after a rearrangement the matrix 
of these vectors is upper triangular, they span Rn. Let us denote 

||x||, = max{|x rjp ( , / ) | / | |p (y ) | | j = k + l , . . . , k + n} 

for k — 0. Hxll* defines a norm on Rn and there exists a constant yk > 0 such that 
||x||ft ^ y*||^|| f ° r a u xeRn. Let us denote L0 = L(/(x(

0
0))). According to the assump­

tion (2.3) the level set L0 is compact. All points x ( l ) defined by the algorithm (2.1) 
which define the vectors p(k\ lie in L0. Let us denote 

y = inf yk, k = 0 . 

Then we have 

||x||fc = yfe||x|| ^ y||x|| , 7 > 0 

and (2.4) holds. 

P roo f of T h e o r e m 1. The condition (2.3) ensures that x(n) is well defined and 
L0 = L(/(x(

0
0))) is compact while (2.2) ensures that xn

n) lies in L0. By virtue of Theorem 
14. 2. 10 [1] and Theorem 14. 1. 3 [ l ] and with regard to the fact that the sequence 
{p(Ii)} is uniformly linearly independent Theorem 14.6.4 [1] applies and Theorem 
14.1.5 [1] shows the convergence of {x(n)}. 

3. SPARSE SYSTEMS 

In most mathematical representations of real problems the relations of the system 
contain only a few common variables. In the case of a system of linear algebraic 
equations the sparseness of the matrix influences the structure of the algorithms. 
According to the algorithm (V4), the following statement can be proved [13]: 

Let A be a strictly regular, g-diagonal band matrix. Let v(
0

k) = x(
0
k) — x0

0) be in the 
form 

(3.1) vr = (o,...,tk,...,oy 
where tk = 1. Then 

(3.2) x(k) = x\() + v(
0
k) k > \(q - 1) + i ; i = 1, 2 , . . . , n ; k = i, i + 1, . . . , n . 

Likewise we may derive reduced algorithms for other structures of sparse matrices 
such as block diagonal matrices, bordered block diagonal matrices, bordered band 
matrices. The sparseness of the matrix also influences the structure of the algorithm 
for the minimization of the quadratic function (1.6): 

Let A be a positive definite, symmetric, g-diagonai band matrix. Then for the 
algorithm (1.7) —(1.8) it holds [14] 

x(k) = x\l) + v(
0

k) k> \(q - 1) + i ; i = 1, 2 , . . . , n ; k = i, i + 1, . . . , n , 
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where v0
fc) is in the form (3.1). For illustration, the number of function values of (1.6) 

required for minimization by the above described method and the method of con­
jugate gradients with exact difference formulas is as follows [14]: 

full matrix n2 + 2n 2n2 + 3n 
5-diagonal band matrix In — 6 2n2 + 3n 
3-diagonal band matrix 5n — 2 2n2 + 3w . 

The structure of the matrix has no influence on the total number of function values 
in the case of gradient methods using difference formulas. 

In order to obtain a more general result we first introduce a definition (see also 
in [4]). Let / : Rn —> Rt be a continuously differentiate strictly convex function. 
Let us consider the system 

(3.3) dfldxt = / , ( * - , x2, ..., xn) = 0 i = 1, 2 , . . . , n . 

Let us denote/ ' (x) = (dfjdx1, dfjdx2, •.., dfjdx„). The system (3.3) will be assigned 
a Boolean matrix, called the occurrence matrix: 

An element of the matrix, sij9 is either a Boolean 1 or 0 according to the rule 

1 if the j-th variable appears in the i-th equation 
0 otherwise. 

This matrix then indicates the occurrence of the dependent variables in each of the 
relations and, which is equivalent, the functional dependence between the corres­
ponding variables. The occurrence matrix corresponding to a function f(x) is known 
either a priori or can be found. 

Theorem3. Let f:Rn->RJ be a continuously differentiable strictly convex 
function satisfying 

(3.4) l im/(x) = +oo . 
ihll-oo ' 

Let the occurrence matrix corresponding to the function f(x) be a q-diagonal band 
matrix. Let x0

0) e Rn be an arbitrary starting point and let v0
k> = x0

fc) — x0
0) be 

in the form 

vp = (o,...,tk,...,oy 

where tk = X. Then for x(k) defined by the algorithm (2.1) it holds 

Af> = Af > + v(
0

k) k > i(q - 1) + / ; i = 1, 2, ..., n ; k = /, / + 1, ..., n . 

Proof . For i = 1 according to the algorithm (2.1) we have 

.xV> = xy> + a0
,>vv0

1> = x r + ao°V0'> 

*<-> = x
(
0

k) + a^Vo1) k = 2,3,...,n. 
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For x\k) we obtain 

(3.5) x\k) = *•{*> + «?>w0" > = x0
0) + a ^ 1 > + - « fc = 2, 3, ..., B . 

For xf it holds that 

C/'(*?')Vol)) = 0 fc=l,2,...,«, 

i.e., in view of the form of w0
n and f'(xf}) we have 

(3.6) j,(x(A>,x(/2
),...,x(';>) = 0 fc=l,2,...,B. 

whereby p = %(q — l) 4-1. Let a(
0
0) = a(

0
fe) for k > p = |(tf - 1) 4- 1. Then accord­

ing to (3.5) the equation (3.6) will be fulfilled for k < | (g — 1) 4- V The assumption 
(3.4) ensures that there exists only one such a\k) for which the equation (3.6) is ful­
filled for given k, hence for a(

0
fe) defined by the algorithm (2.1) we have 

a0
01 = a(

0"> k>l(q-l)+l 

and therefore 

(3.7) 

x<*> = x0"> + « [> [ , " = 4 0 ) + «o0)Wo" + vlk) = x(1> + v<0
k) k>i(q~l)+\. 

For i = 2 according to the algorithm (2.1) we obtain 

x,
2

2) = x<,2) + a(2V1
2> = x'1

1> + a(,)w(2> 

(3.8) x(
2*> = x(<> + a(2 V,2> fc = 3, 4 n. 

By means of (3.7) we have 

(3.9) x(/> = x?> + a ( > ( 2 > = x(1> + a(*>w(2> + v(k) fc > \(q - l) +2 . 

For x(
2*) it holds according to (2.2) that 

(f'(x2
k)),w\2)) = 0 fc = 2,3 n 

where 
w\2) = (w\2),w\2),0,...,0y, 

i.e., in view of the form of w[2) and f'(x(
2
&)), 

lT 1f . \ f J/v(/c) v ( k ) v ( / c ) ", v.,(2> - i - f f V k ) v ( k ) v ( / c ) ( u ; ( 2 ) — 0 

(3AUJ Ji{x2u x22, ..., -x:2p-ij vvn 4-j2vx;21, x22 , ..., x2pJ w ]2 - u 

k = 2, 3, ..., n , 
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where p = i(q - i) + 2 . LQt <x[l) = aik) for k > i(q — l) +2. Then according to 
(3.9) the equation (3.10) will be fulfilled for k > i(q — 1) +2 . Since the assumption 
(3.4) ensures that there exists only one such aik) for given k that the equation (3A0) 
is fulfilled, hence for a\k) defined by the algorithm (2A) we have 

ai l ) = a<k) k > i(q - 1) + 2 

and therefore 

xf = xf + aik)wi2) = x ^ + a<1)w<2) + v(k) = x<2) + v<0
k) k > i(q - l) +2 . 

Let 

(3.1J) x<fc) = x f + v<0
k) k>i(q - l ) + j . 

For i = j + 1 we have 

vO'+D _ 
c j + i ~~ XJ 

x<*+\ _x< k ) + a<k)wy+1) k=j + 2, . . . , « . 

According to (3.11) we have 

(3.12) x<fc
+\ =x<k) + afw< / + 1 ) = xy ) + a<k)wy+1) + v<k) k > i(q - 1) +j + 1 . 

For x(klx it holds that 

( r W + i ) ^ 1 i + 1 ) ) = o k = j + V...,n 
whereby 

u,(./+n __ (M,o+i) u/1+1) o n(7 

Wj — {wjl , . . ., Wjj+ j , U, . . ., Uj , 

.e , in view of the form of f'(x<k
+ *) and w(/ + 1} , 

(3.13) J Z / i ( x ^ 1 ) w V : + " = 0 fc=i + l , . . . , n 

and p = i(a — 1) + j + 1 denotes the last component x<k
+1/7 of x<+\ infy+1(x<-k

+1). 
Let ocf = a<k) for k > (q ~ l)/2 + j + 1. Then according to (3T2) the equation 
(3.13) will be fulfilled for k > i(q — 1) + j + 1. Therefore according to the assump­
tion (3.4), for a<k) defined by the algorithm (2+) it holds 

a<* > = a f k>i(q-l)+j + 1 

and for x<k+ j we have 

x<k)
I = x(k) + a f w^+ 1 ) = x f + a f w ^ + 1 ) + v<k) = x(/+\l) + t#> 

k > i(q - 1) + j + 1 . 
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Since Theorem 3 holds for an arbitrary starting point x0
0) it can be applied to each 

iteration defined by the algorithm (2.1). For q = 1 we obtain the nonlinear Gauss-
Seidel iteration. It means that the nonlinear Gauss-Seidel method is efficient if the 
occurrence matrix is diagonal. Theorem 3 enables us to reduce the computational 
time required for the minimization of f(x). 

4. COMPUTATIONAL CONSIDERATIONS 

In this part we will consider an alternative implementation of the algorithm (2.1). 

(4.1) A l g o r i t h m . 
Step(O): Define X and set x0

fc) = x0
0) + v0

fc) for k = V 2, ..., n; set i = 1. 
Step (l): Compute 

where 
+ a , _ , W í . i 

wO) _ ,,(') /||f,(0 II Ji) _ xd) _ xa-i) 
Wi-1 — Vi-ll\\Vi-l\\ > Vi~í ~ Xi~l Xi~l 

and a(L , n is a scalar coefficient such that 

M-i) 

i- 1 

( i - D 
a = a) 

Step (2): Compute 

x(fc_\ =x |L )
1 -(x\k\ - x l V ^ j ^ i k = * + l , . . . , n . 

Step (3): Compute 
Y ( ^ ) _ Y ( k ) -4- /y(fc) w ( l ) 
x i ~ x i - l + a i - l H i ~ l 

where a ^ j is a scalar coefficient such that 

A ^ - i +aw (L )
1) = min! 

a = a £ \ k = i + 1, ..., n . 

Step (4): Set i = i + 1. If f ^ n then go to Step (l); else, go to Step (5). 

Step (5): If ||x<"> - x(0) | | = 0 v |f(x(«>) - f(x(0))| = 0 v ||f'(x<">)|| = 0 then stop; 
else, x(

0
0) = x(n) and go to Step (0). 

In Step (2) we define the orthogonal projections of the point x( l ), defined in Step (l), 
on to the cotresponding parallel directions using the fact that the vectors w(L\ are 
normalized. In the proof of Theorem 3 we have seen that the vectors v(fc) = x(fc) — x^l) 

for k > ^(g — l) + i are orthogonal to w\llx. These vectors are nearly orthogonal 
in the case of well-conditioned problems and in the neighbourhood of the global 
minimizer. By a suitable choice of X the orthogonal projections, defined in Step (2), 
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are good initial approximations of the local minimizers on the corresponding direc­

tions. In Step (3) we consider the linear minimizations on the corresponding parallel 

directions using the result of Step (2). Step (2) may be considered a predictor and 

Step (3) a corrector of the local minimizers. 

The above described algorithm terminates theoretically after a finite number 

of linear minimizations for functions for which the equiconstant level sets are con­

centric ellipsoids, e.g., g = exp [f(x)] where f(x) is a quadratic function. In this 

case the algorithm requires in general \n (n 4- 1) linear minimizations and In — 1 

linear minimizations if the occurrence matrix is 3-diagonal band matrix. The other 

methods of this type [7], [8], [3], [6] require n2 linear minimizations per iteration 

and the structure of the occurrence matrix has no influence on the number of linear 

minimizations. In numerical examples we have calculated local minimizers with an 

accuracy of 10" 6 . If k is a constant it must not be chosen too small. The main advant­

age of the algorithm is that the sparseness of the occurrence matrix enables us to 

define effective reduced algorithms which reduce substantially the number of linear 

minimizations and require small storage facilities. 

5. NONLINEAR SYSTEMS 

Let F : Rn —> R„ be continuously differentiate with F'(x) symmetric and satisfying 

for some c > 0 

hT F'(x) h ^ chTh Vx, h e Rn ; 

then the function g : Rn -> Rl9 

g(x) = I x T F(tx) dt 7(x)= ГxтҒ(ґx). 

according to 4.1.6 [ l ] , 4.3.6 [ l ] and 3.4.6 [1] is uniformly convex, g'(x) = (Fx) r 

and lim g(x) = + oo for ||x|| -> oo, so that the unique minimizer of g(x) is the unique 

solution of Fx = 0. 

6. PARALLEL COMPUTATION AND STORAGE REQUIREMENTS 

The above described algorithms are suitable for implementation on a parallel 

computer. The minimizations on parallel directions are independent from the com­

putational point of view and can be calculated simultaneously. If we assume that the 

minimizations on parallel directions require the same computational time and that 

they are calculated simultaneously then one step of the above described algorithms 

on a parallel computer is equivalent to one step of the generalized Gauss-Seidel 

method and the rate of convergence is substantially better. The sparseness of the 

occurrence matrix influences the number of processors. Each processors of a parallel 

computer has to store one vector. The total storage requirements for a sequential 
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computer are less than \n2 + 2n + 2. If the occurrence matrix is a ^-diagonal band 
matrix then it is necessary to store ^(q — 1) + 1 vectors. In [5], [9], [10], [11] other 
parallel iterative algorithms are described. 
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S ú h r n 

NELINEÁRNĚ ITERAČNÉ METODY A PARALELNÝ VÝPOČET 

FRIDRICH SLOBODA 

V článku sú skúmané nelineárně iteračné metody pře minimalizáciu spojíte diferen­
covatelných ostro konvexných funkcií, je popísané zobecnenie jednej priamej pro-
jekčnej metody pre riešenie systému lineárnych algebraických rovnic. Metoda je 
vhodná pre paralelný výpočet a pre riedke matice výskytu. 
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