Article
Summary:
Using the new variational approach for solving one elliptic equation of second order with constant coefficients, the authors study the rate of convergence of Galerkin's approximations in a space of curved finite elements.
References:
[1] J. Haslinger I. Hlaváček:
A mixed finite element method close to the equilibrium model. (To appear.)
MR 0345433
[2] J. Haslinger I. Hlaváček:
A mixed finite element method close to the equilibrium model applied to plane elastostatics. (To appear.)
MR 0391539
[3] M. Zlámal:
Curved elements in the finite element method. SIAM J. Numer. Anal., Vol. 10, No. 1 (1973), pp. 229-240.
DOI 10.1137/0710022 |
MR 0395263
[4] P. G. Ciarlet P. A. Raviart:
Interpolation theory over curved elements, with Applications to finite-element methods. Соmр. Meth. Appl. Mech. Eng. 1 (1972), pp. 217-249.
DOI 10.1016/0045-7825(72)90006-0 |
MR 0375801
[5] J. Nečas:
Les méthodes directes en théorie des équations eíliptiques. Academia, Prague 1967.
MR 0227584
[6] J. Haslinger:
Elements finis et la convergence à l'interieur du domaine. CMUC 1974, 1, pp. 85-102.
MR 0337026
[7] I. Babuška: Approximation by hill-functions II. Institute for fluid Dynamics and Applied mathematics. Technical Note BN-708.