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SVAZEK 20 (1975) APLIKACE MATEMATIKY &isLo 4

CURVED ELEMENTS IN A MIXED FINITE ELEMENT METHOD
CLOSE TO THE EQUILIBRIUM MODEL

JAROSLAV HASLINGER, IVAN HLAVACEK
(Received May 22, 1974)

INTRODUCTION

Recently we have derived a new type of mixed finite element method [1], [2]
which gives approximate solutions to the Dirichlet boundary problems for one
elliptic equation and for the system of plane elasticity. The Galerkin approximations
are vector-functions, converging to the a priori chosen components of co-gradient
(or of the stress tensor) and to the solution itself.

7

The present paper extends the method of [1] to domains with smooth boundary,
using the curved elements along the boundary. Some L,-error estimates are presented,
similar to those of [1]. Although only one equation is considered here, the same
approach is applicable to the elliptic systems such as in [2].

In Section 1 we recall the main features of mixed finite element model of [1].
Section 2 shows the application of two types of curved elements, namely (i) the ele-
ments, describing the boundary segments exactly, analyzed by Zlamal [3] and (ii)
the elements, interpolating the boundary segments, the theory of which was given
by Ciarlet and Raviart [4]. In Section 3 we apply in particular the quadratic inter-
polation of the boundary.

1. VARIATIONAL FORMULATION AND A MIXED
FINITE ELEMENT MODEL

First let us present notation, used throughout the paper. Consider a bounded
domain @ < E, with a Lipschitz boundary I' (cf. [5] for the definition of a Lipschitz

boundary). By Z(X, Y) we denote the space of linear, bounded mappings from X
into Y.

Wh%(Q), k = 0, integer, will denote the Sobolev space of functions, the generalized
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derivatives of which up to the order k are elements of L,(Q) (square-integrable).
Using (.;.) for the scalar product in L,(Q), we introduce the norm in W**(Q) by

Jolio =1 ¥ (D*; D*v)]'/2
el =k
and the system of seminorms by
I”lj,n = [l IZ _(D“v; D°‘v):|”2 (j < k)
al=j
where

0'*lp(x)

D% v(x) =
() oxt ... ox;r

n
yoo= (a0, |of =.21°‘i
£

and o; are non-negative integers.

In case k = 0 we set W %(Q) = L,() and write simply [v]o,o = ||| . Moreover,
the subscript Q is omitted if any misunderstanding is not possible.

W4'*(Q) denotes the subspace of W*%(Q) of functions, the traces of which vanish
onl.

A repeated Latin index implies always summation over the range 1,2,...,n,
unless exceptions are stated explicitely.

In the present Section we give a brief summary of some results of [1], which will
be used later.

Let us consider the following problem

0*u .

(1.1) a;; oxi 0%, f in Q,

u=0 on I,

where f € L,(R), a;; = const. form a symmetric positive definite matrix n x n.
The weak solution of (1.1) is defined as a function of W§'*(Q), which minimizes the
quadratic functional #(u) = $A(u, u) — (f; u) on the space W}*(Q), where

Alu,v) = a,-ja—u ; ﬂ) .
Ox; 0x;
Let us introduce
# = W)
and the bilinear form B(4, u) on o x # as follows:
(1.2) B(A, 1) = (bijAs py) — vy~ M(div A — oy divp — )

where b;; are elements of a matrix inverse to [a;;], @ = (&4, ..., ,) is a constant
non-zero vector, y = a;0;, div A = 04;/0x; = A; ;. In [1] we have shown the con-
nection between the solution of (1.1) and the solution of the following problem:
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to find A° € #, such that
(1.3) B(A% p) =y~ Mf; divu — ojp;) Vpe .
The connection is given by the

Theorem 1. Let the weak solution of (1.1) u belong to W**(Q) n W5*(Q) for any
f € Ly(Q). Then (1.3) has precisely one solution 2° € # and it holds :

(1.4) }L?=a,~j<@i+aiu>, i=1,2,...,n
Ox;

(1.4") u=9y"Y=f—divi® + ocjlj-’

® 5 1asl + v 7] 5 el

whére ¢ is a constant independent of f.

Remark 1.1. The relation (1.3) is necessary and sufficient to the fact, that the sta-
tionary value of the functional

y(ﬂ) = (b,-j/li; },j) — y'lndivl — +f”2
is attained at 1 = A°.

Remark 1.2. The regularity assumptions of Theorem 1 are satisfied e.g. if I' € C*
orif Q < E, is a convex polygon and a;; = J;;.

On the basis of (1.3) the Galerkin approximations can be defined [1]. Here we
present only a survey of results, which will be needed in what follows. For simplicity
let us restrict ourselves only to the model problem

(1.6) —Au=f in QcE,

u=0 on I.

A more complex problem, namely that for the system of equations of linear plane
elasticity, has been analyzed in [2].

Let us set

(1.7) : Oy =dy=...=y, =0, o =at
and define
(1.8) . o =oaoh™ 7"

where he (0, 1), ¢ > 0, ¢ > 0.
Introducing
To=a 2, b,=a 'y,
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we obtain from (1.4)

0 1+e
= o n—1;
Ox; oy 0X,

Substituting for A, 4y, We may write

B("{l’ AR An; His eees /ln) = E(}'l’ cees Zna His ooy ﬁn) s

n—1
(19) B(}'l’ Tty Zn; His oo ﬁn) = Zl(j‘p .uj) + <x2(’.{"; ﬁn) -
j=
n—1

1 ~ n—1 _ _
- (2 ’q'j,j + O(in,n - aZZn; Zﬂj,j + Oy n — az.un) =
o” J=1 Jj=1
n—1 n—1 n—1
= Zl&ii,-(/li, 1) +.Zld,,j(1,,, 1) + _Zlvdj,,(,lj, Bn) + (L )
L= J= J=
where
(1.10) ot (A 1) = 64(As ) — « X (R 1y;)  dj=1,...,n — 1 (no sum)
dnj(zm :uj) = (“a—lzn,n + /‘—Lm :uj,j) j= L..,n-1
djn(’l_)" [-1,,) = (A'j,j; —“—lﬁn,n =+ ﬁn) ] = 1’ ey B — 1

‘dnn(zna ﬂn) = —(In,n; ﬁn,n) + OC[(/TL,,,"; .En) + (Im ﬁn,n)]

Moreover, let us introduce another bilinear form

(1.11) B(Ags oo Ty By eees ) = B(Ayy ooy Ay By oens — i) =
n—1 n—1 n—1
= Z.Mij('lis ﬂj) + .Zlﬂnj(zm ﬂj) - _Zl-djn(}»j, ﬂn) - Mnn(zm ﬁn) .
t,J Jj= i=

It is readily seen that the problem to find 1° = (1%, ..., 12) € o# such that
n—1

(1.12)  B(AY, . A2; Hyy ees ) = oc"z(f;.zluj,j — Ofl, 5 + 0PfI,) Vii€ H
=

is equivalent to (1.3).

In order to define Galerkin approximations, we introduce two families of finite-
dimensional subspaces V,, V,, 0 < h =<1, 0 < h, = 1, which satisfy the following
assumptions:

(i) (Conformity)
Ve WAQ), W< W),
(ii) (Approximability) 3x = 2, Vv e W**(Q) Iy e Vi
lo = xl; = e[l s
In, = 2, Ywe W (Q) n Wy X(Q) W eV,
[w—vl; = o], (G=0.1).
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(iii) (Inverse inequality) A constant C exists, independent of x and h, such that
for sufficiently small 4 and any y € V,

lxls = eh™*|x] -
Denote
V() = (W)™ x Vi, = (W) .

We say that an element 1" e V(h, h,,) is a Galerkin approximation to the solution
2% = (43, ..., 27) of the problem (1.12) if

n—1
(1.13) BOM, i) = a”(f; Y 1j; — Oty + 0*i3,) VieV(h, h,)
j=1
In [1] the following rate of convergence is proved for the Galerkin approximations:

Theorem 2. Let the solution u of the problem (1.6) belong to W*(Q) n W, *(Q),
where q = max (x + 1, %,) and to W»*(Q) for any f e L,(Q). Then for sufficiently
small h the Galerkin approximations are defined uniquely by (1.13) and it holds

n—1

(1.14) 5

j=1

ou o

ox,

& - ,1;3
axj

< o[+ b+ R+ ] ull,

e

+ ’

n n

2. SPACES OF CURVED FINITE ELEMENTS

In the error estimate (1.14) the essential role is played by the assumptions (i), (i),
(iif), which are imposed on the spaces ¥}, V;,.. In [1] we have dealt with the most
simple application of Theorem 2, namely with the case that a plane domain Q is
a convex polygon and V,, ¥}, are spaces of triangular elements.

It is the aim of the present paper to study the case @ < E,, I'e C**!, where k = 1
is an integer. Here we shall consider also curved elements along the boundary. The
section will be divided into two parts. In part A we sketch the technique developed
in [3] for the case that the curved side of the boundary elements (in E,) coincides
exactly with the corresponding arc of the boundary I', while in part B we shall employ
the elements, the curved side of which approximate I' only (see [4]).

As the proof of (iii) goes through analogously in the both parts A and B, first
we prove an auxiliary lemma. To this end we introduce a new equivalent norm in
Wh2(Q). Let u e W*(Q). By means of D’ u(x)e Z((E,, E;), (j < k) we denote
j-th derivative of u at the point x.

Define

Ju(x)] = su [D7u() (s, ... ) ;€
S e A AN A
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and set

@ ([T = (3[40

where
X 1/2
[].0 = (f [0 u(x)]? dx) .
Q
It is readily verified that such constants ¢y, ¢, > 0 exist, independent of u, that

(2:2) esluljo S [ulje S cofulje 0= k)

Let K < E, be a fixed domain with Lipschitz boundary, F a C!-diffeomorphism
between K and K = F(K) and P < W**(K) a finite-dimensional space of functions
defined on K. If we denote by P; the space of polynomials of the degree at most j,
then it holds usually P,, = P = P, (m < n integers) in practice.

Let us set

(2.3) P = {p; 3pe P, p(x) = p(F~'(x)), where x = F(x), x e R}.
Then dim P = dim P and P = W*(K) (cf. [5], chpt. 2, § 3).
Lemma 3. For p € P it holds
sup |J4(x)[) />

(.9 IPlix S 1+ sup [DF (0P s

[l

where ¢ does not depend on p and K.

Proof.peP=p = ﬁ(F"‘(x)),Ap‘ € P; Dp(x){ = Dp(F~*(x)) DF™!(x){ { € E,;
[Dp(x)] < [DH(x)] [DF~!(x)], (x = F~*(x))

1/2 R
25 [plix= <‘[K[Dp(x)]2 dx> < 115 [DF~1(x)] ii‘,? | Te(R)[2 [p]1.0

where Jp(x) is the value of the Jacobian of the mapping F at x. As P is a finite-
dimensional space and D a linear operator, we obtain

(2.6) [6i. < e[blok = ¢ ( j LSk d;>”2 <o [Plox

inf |J ()|
xeR

The assertion of the lemma follows from (2.2), (2.5) and (2.6).

A. Let us restrict ourselves to the domains Q < E, with the boundary I' € Ck+1
(k = 1, k integer). Let Q,, @, € I', Q3 € Q. By the curved element K we call a closed
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set bounded with the straight-line segments Q; 03, Q,Q3 and the boundary arc QTQ 2-
Let h be the maximal side (0 <h< 1) and 9 the minimal angle of the triangle
0,0,0;. Assume that such 8, > O exists independent of h, such that § = 9, if
h— 0.

Let R be the triangle with the following vertices: P, = [0,0], P, = [1,0], P; =
= [0, 1]. If we know the parametric representation of ¢, Q,, we may construct the
mapping F(&, n) = [x,(& n); x,(¢ n)] which is a C*-diffeomorphism K onto K
for h sufficiently small (cf. [3]).

Moreover, for the Jacobian J, of the mapping F and the inverse mapping F~*
we have the following estimates

(2'7) clh2 é |JF(67 11)‘ é th2 V[é’ 71] € K >
where ¢,, ¢, are positive constants independent of K and h;
(28) [DF~1(x)] < ch™* Vx =[x, x,] K.

According to [3], P = P,,_,, (m = 1,2, ...), the polynomials being determined
uniquely by the following conditions

(29) D'p(P) |ijsm—-1,j=1,273
D' p(Py) |i| £ m — 2, P, is the centre of gravity

of K and for m = 1 the conditions at P, are not included. The derivatives in (2.9)
are taken in the sense of § 1.

We can easily derive a local variant of the inverse inequalities.

Lemma 4. For Vp € P (defined by means of (2.3)) and sufficiently small h it holds

(2.10) Ipls.x = ch™* Pl
where c is independent of h, p and the element K.

Proof. Follows immediately from (2.4), (2.7) and (2.8).

Next let us construct the “triangulation” 7, of ©, i.e. let us represent Q as the sum
of a finite number both of curved elements along the boundary I' and of internal
triangular elements, satisfying the usual requirements imposed on their mutual
position. Each “triangulation” 7, will be characterized by the two following para-
meters: h is the maximal side and 3 the minimal angle of all “triangles” K; € J,,.
Assume that g, is regular, i.e. a constant 3, > 0 exists, independent of h such that
3 = 9, if h — 0. Note that each straight element-triangle can be analyzed by means
of the isoparametric technique as an affine image of K. The local inverse inequality
(2-10) holds for straight elements (see e.g. [6]) as well as the approximability (see

e [3], [4]).
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Define
(2.11) V, = {ve C(@) n W"*(Q), v|x, e P, VK;e 7,}
I/h" = {UE Vh; Ulr = 0}.

Remark 2.1. We can consider more general cases, when the basic space P used
for V, is different from that used for V,,.
The properties of approximability of spaces V), V}, are given in the following

Theorem 3. (cf. [3]) Let 7, be a regular triangulation of Q, T € C¥*1, y e W-2(Q)
k= m + 1, m = 1. Then there exists a function y € V,, such that:

(2.12) lu = xlj0 £ b |ulva, j=0,1; %=min(2m,k),

where ¢ does not depend on u, h. _
An analogous theorem is true for u € W*(Q) N W, *() and its approximation
in the space V},.

Theorem 4. It holds
(2.13) [v)1,0 S ch™Yollo VoeV, (veV,)

with a constant ¢ independent of v, h.

Proof follows immediately from (2.10) and the local inverse inequalities for
straight elements.

By virtue of the choice of ¥, V;,, Theorems 3 and 4, the conditions (i), (i), (iii)
are satisfied and Theorem 2 can be applied to the error estimates of Galerkin ap-
proximations.

B. Let us consider curved elements, which do not describe the boundary exactly
but only approximately. A detailed analysis of such elements can be found in [4].
Here we present only their construction briefly and restrict ourselves to the case of
Lagrange interpolation.

Let £ = {4;}!_, be N different points of E,, K = conv (£) the closed convex hull
and P a finite-dimensional space of functions defined on K. Let £ = {a;}., be
another array of N points of E,, and suppose that there exists a mapping F from E,
into E, such that

(2.14) F is a simple mapping of K onto F(K),
| F=(F,Fs,...,F), FieP (i<n), F(d)=a,i=1,..,N.

The set K = F(K) together with P defined by (2.3) will be called a curved element.
While the mapping F of part A, describing arcs of I', could be relatively complicated,
in the present case its components are from P, consequently polynomials in practice.
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As the properties of approximability are concerned, there hold results similar to those
for “straight™ elements, provided that the curved elements do not differ “too much”
from the straight ones. Let us show this on the example of simplicial elements.

Let £ = {4}, be N different points of E,, N = n + 1 where
G =(0,...1,0,..,0) 1<i<n,
ey = (0,...,0)

and K = conv (£) is a non-degenerate n-simplex in E, with the vertices dy, ..., dy+ ;.
Let (Z,), (0 < h < 1) be a family of sets, each of them consisting of N different points,
ie. %, = {a;}i.;, N = n + 1 (the subscripts h will be omitted for simplicity) and
such that ay, ..., a,4 are vertices of a n-simplex K, = F\(K), where F, is an affine
regular mapping. Suppose that for each h e (0, 1) there exists a mapping F,, of the
form (2.14) and let K, = F,(K) be the family of curved elements. Denote k the dia-
meter of K,, o, the diameter of a hypersphere inscribed in K, and assume that there
exists ap; > 0, independent of h, such that

(2.15) % > .

Let ﬂxﬁep be the Lagrange interpolate of the function # on £ and define
u(x) = Ngia(F~*(x)) € P, where u = 4(F ~*(x)). Then the following result is true:

Theorem 5. Let the following conditions be satisfied:

@) P, = P <= C**Y(R), k = 1, k integer

B) the family (K,) is regular in the sense of (2.15)

P Viin+2=i<N, |a; — a = O(h®), where a; = F)(a))

5) for every integer j, 2 < j < k + 1 there exists a constant ¢

= > independent
of h and such that

(2.16) §u}; [DI Fy(x)] < ¢;h7.

Then for every integer m,0 < m < k + 1, there exists a constant ¢, independent
of h, u and such that
(2.17) Iu - qulm,x,. < 6h"+1""'ﬂuﬂk+1,,<h

holds for all ue W**13(K,), k + 1 > in.
For the proof we refer to [4].

If J,(x) (J,(X)) is the Jacobian of the mapping Fy(x) (F,(X)), and if «)—5) are
satisfied, then we have (cf. [4])

(2.18) 7B £ [1E)| = (@) vieR
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(2.19) sup [D Fy (x)] = 3 sup [D Fy(x)] -

As F(x) = Byx + b, where B, is a regular matrix n x n, J,(x) = const. and it
follows that (cf. [4])

(2.19') sup [DF(x)] = ||B, "] = ch™"

where ¢ does not depend on h.

Using Lemma 3, (2.18) and (2.19) we obtain the local inverse inequality of the
form (2.10) on K, for the function of P.

The “triangulation” 7, of Q will consists from the curved elements along the
boundary and straight elements. The curved elements have only one curved side,
namely that, which approximates I'. In the interior of Q we employ the straight
elements, i.e. affine images of K. Suppose that 7, is regular, i.e., such constant
oo > 0 exists that

% > 4o VK;€ T, .
Let Q, = U K; with the boundary I',. In general Q, & Q. Define the finite-

KieIn

dimensional spaces V,(Q,), V;,.(2):
V(@) = {ve C(@,) n W"A(Q,), v|c, e P, VK, T,},
(220) V(@) = {ve Vi(@), v|r, = 0}, V(h, hy) = [Vi(@)]'™" x Vi (@) -

If the curved elements satisfy the conditions of Theorem 5, then (2.17) and the well-
known properties of straight elements yield the approximability (ii) by spaces ¥}, V}, .
Likewise the inverse inequality for V,(€,) follows easily.

It is necessary to define newly the Galerkin approximations and the sense of their
convergence. Let Q° > @ be a bounded domain. Then Q° > @, for sufficiently
small h. Let the right-hand side f be defined on Q° and suppose that each component
of the solution 1° can be extended from W'*(Q) into W*'3(Q°). We say that I* e
€ V(h, h,) is a Galerkin approximation of 1°, if

- n—1 def
(221) BQ;.(Ih; ,LL) = a—z(f; 'zlﬂj’j — Oy + azﬂn)Q;. = [fy /‘]Qh Vﬂ € V(h’ hn) .
j=
Here By, denotes the bilinear form (1.11), where the corresponding scalar products
are integrated on Q,. .
We define for A = (1, ..., 4,) € #(Q,) = [W"*(2,)]" the following

n—-1
12,1, ‘—‘i;”xi”m + A nlen s
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n—1 n—1

[4]ln.2. =i;”’15”9h + b7 Y Ao +J_;”'1i.i”nh + [Anal a0
n—1 n=1

e =5 Villon + 1 [iedla, + Phnali

Lemma 5. For any € #(%,) and pe V(h, h,) it holds

(222) |§9h(l’ H)I é C“;LH'I,Q;. . “IJ’H*,Qh >
where c is independent of h and Q,.

Proof is the same as in [1].
The error estimate will be derived on the basis of

Theorem 6. Let
(223) lol1.0, < ch™*|v]lq, Yoe Vi(2),

where ¢ does not depend on h and Q,.
Then
D 0 h.
@224) |0 = Py < c[ inf |70 = o, + sup M]
w*0

eV (h ) AN ||°"Uh.hn

Proof. Let us consider an arbitrary 1 e V(h, h,). Using (1.7), (1.8), (1.10), (1.11)
and (1.23) we obtain

n

-1
= (= DT 0, + [l 2

n—1
Bo,(4; %) = ci; ||Zi

n—1
2 (L= en®) X [ hlan + [Anala, = el 2],

for sufficiently small h.
Let 1" € V(h, h,) be the Galerkin approximation of 1° and fi € V(h, h,) arbitrary.
Then Lemma 5, (2.23) and inequalities

[ls = 12lnn VAe# (),

luls.0n = clilum, Vee V(h, hy)
result in

(2.29) | = il < Bo = s 7 — ) =
= Bo, (I — 1% 1 — ) + Bo(° — s 1 — ).
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Denoting o = 2* — fie V(h, h,), we may write

[Bo,( — 1% 0)]

| = iflan = 12° = ., + sup
w0 lols.n.

weV (h,hn)
Finally the assertion (2.24) follows easily, using also the “triangle” inequality.

Remark 2.1. The occurence of the second term in the right hand side of (2.24)
corresponds with the fact that the approximate solution is sought on the region
Q, + Q. While in part A we could choose the space V¥, of trial functions, approxi-
mating the last component, different from V}, by means of which the approximations
of the first (n — 1) components is defined, here the situation is different. In the
present case the “triangulation” 7, and the space P are the same both for Vi 24)
and V, (2,). A modification, however, is possible as will be shown in the next section
in Remark 3.1. First we define the space ¥}, (€,,) by choosing P and 7, , then carry
out the “triangulation” 77, of ©, in a suitable fashion in the sense of part A and set

V(@) = {ve C(&,,), v|x,e P, VK;e T},

Here P is the same both for V; (@,,) and Vy(@,,)-

3. APPLICATION OF QUADRATIC INTERPOLATION

To illustrate the general theory of Lagrange interpolation of part B let us consider
the following model problem

(3.1) —Au=f in QceE,,

u=0 on I'eC”,
where fe W™*(Q), m = 1.

It is well-known (cf. [5]) that precisely one solution u e Wmr22(0) W)
exists such that

'[ grad u . grad vdx dy = J‘ fovdxdy Vve Wol'z(g)
2 o

and

Julaszio < el floe, mzqzo0.

The solution u (the right-hand side f) can be extended from Wm+2.2(0) into
Wnt22(E,) (from W™*(Q) into W™2(E,)) in such a way, that (cf. [S], chpt, 2 §3)

(3~2) L ”a"m+2,E2 = C”u"m+2,n§ “f"m.Ez = C”f”m,g
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where i and f denotes the extension of u and f on E,, respectively. Then also the
extensions of the components A9, 13 of the solution 1° onto E, are defined through
aﬂ 70 _ h1+£ ﬁ

33 W=7
( ) ! 0x, 2 oy 0%,

+ 1.

Let h > 0. Choosing N points Q;, Qs, ..., Qy on I' such that dist (Q;, Q;+,) < h
(j=1,..,N; Qy+; = Q;), we may construct a polygon ; determined by the vertices
Qs ..., Qn. Let 7 be a regular triangulation of Q; with the following properties:

(a) diam (K;) < h VK;e 7,
(b) every triangle has at most 2 vertices on I,
(¢) the whole segment Q;Q;,,, (j = 1, ..., N) represents a side of a K.

The elements, having precisely two points on I, will be called boundary elements,
the other interior ones. We shall modify the side Q;Q;, , of every boundary element,
as follows: in the centre of Q;Q;,, we construct a perpendicular line and denote
its intersection with I by Q;,,,,. The boundary arc of I' will be approximated by
the parabola determined by the triple Q;, Q;1/2, Q;+;- The domain with this
modified piecewise parabolic boundary will be denoted by @, and the corresponding
system of elements by 7 ,. The construction can be described in terms of isoparametric
technique. Let K be the basic triangle with the vertices d; = [0, 0], 4, = [1, 0],
dy = [0,1] and the centres of sides d, = [4,0], ds = [4, 1], ds = [0,1]. Every
interior element is an affine image of K. Every boundary element K € 7, is an image
of K for a mapping F : E, — E,, both components of which are polynomials of the
degree at most two, and which is determined uniquely by the conditions F(4;) = a;
(i = 1,...,6) (see the figure 1), where a5 = (a, + a3), ag = Ha, + a;) and a, is
found like Q;, /5.

Fig. 1.

It is proved in [4],that in this case the mapping F is a C'-diffeomorphism between K
and K. Let the function  be defined on K. By [I¢0 we denote the quadratic Lagrange
interpolate of 9 on K, i.e.
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(i) Ngpe P = P,,

(ii) Med(a,) = o(a,), i = 1,..., 6.

Let K € 7, K = F(K) and set v(x) = 8(F~*(x)), x € K. The Lagrange interpolate
Iv of the function v on K will be defined through the relation ITgxv(x) =
= T1x(F ~*(x)). For the error estimate we deduce from Theorem 5

(34)  |o— Hgo|jx S ch* ok, k=2,3; j<k; Voe W(K).
Let P be the space defined in (2.3) with P = P,,
Vi, = {veC(@,)n W"*Q,), v|xeP, VKe T,},

V,, = {veV, v, =0}

2

and define
rve L(WHHQ,); Vi) 0 L(WHHQ,) o W2 (2,): Vi)

by the relation
roo=1IIgr on KeZ,.

From (3.4) it follows
(35 o —rwlie. £ o)k, k=235 j<k; VoeWHH(Q,).

In the forthcoming proof we shall need two auxiliary lemmas.

Lemma 6. Let f € Wy *(Q) and set

s _of i @7 ={xeQ dist(x,]) <n}
"TUN0 in Q,, = {xeQ, dist(x,I') > 2}
Then
(3-6) Ifale = enllf]l1.0

where ¢ does not depend on 1.

Proof. A particular case of a lemma of [7].

Next we shall extend also pu = (u, p,) € V(h, h,) from Q, onto @\ Q,, likewise
we extend the functions u and fout of Q. As p, €V, < WOI’Z(Q,,), it suffices to extend
i, out of @, by zero. For p, the situation is more difficult. Let K be a boundary
curved element, determined by the points aj, ..., ag, and consider an adjoint element
K*, which is determined by the points a¥, ..., ag, where af = a,, a¥ = a,, at = a,
and the remaining points are symmetric to the’ corresponding points of K with
respect to the straight line a,a, (see fig. 2).

If P is the space associated with the element K = F(K) according to (2.3), let P*
denote the space associated with K* = F*(K) (with the same P = P,).
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Let ¢ € P, ¢* € P* be determined uniquely by the conditions qo(a;) = o; = ¢*(a})
(¢;€Ey,i=1,...,6) and set

/<p(x) on K,

®(x) = p*(x) on K*.

Fig. 2.

Then @& defines an extension of ¢ from K on K* It is readily seen that
® e W'3(K U K*). To this end it suffices to show that ¢|; 5 = ¢*|;2. As both F
and F* is a C'-diffeomorphism, it holds

(3.7 o(x)

im = 0(x), e*(X)|im = ¢¥(x¥), X, x*edd,

x = F(x), x*=F*(x).

The assertion follows easily from (3.7) and from the fact, that both components
of F,F* ¢ and ¢* are quadratic polynomials and a% = a,, a3 = a,, a} = a,,
therefore x = x* and ¢ = ¢* on d,d,.

Extension of u; on 2\ Q, will consist of the extensions from every boundary
element K; = F(K) onto its adjoint Ki = F{(K) (i = 1,..., N(h)), described
above. For sufficiently small 4 we have obviously

N(h)
Qc UKfuQ,.
i=1

The extension of u; onto Q will be denoted by fi;, the space of all extension by
V(h) and set

V(h, hy) = I7(h) x V(h,)
(recall that the functions of I7(h2) are extended by zero out of Q,,). We may write
N(h)

o\Q, = v G;,
i=1

where G; < K}.
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As dist(I, T,) < ch?, dist(Q, Q;41) < h (j=1,...,N; I, is the boundary
of @,) and the conditions (2.19), (2.19’) hold, we obtain

New) N(H)
(3-8) 1] aa, = le |y (x)|? dx < 21 max | (x)|* mes (G)) <
i= G: i=1 xeK;*
N(h) o O
< ch* Yy, max [pP(X)? £ ch* Y |09k =
i=1 zeR i=1
N(h) ) ~ . N(h) )
=ch* ) J [P(F (X)) dx < ch* Y sup IJF..-l(x)'f [P(x)|? dx <
i=1 i=1 xeK;

< bl a, (B°(x) = B(FI(X), #P(x) = AP(FT' (),

using also Fubini’s theorem and the equivalence of the norms in C(K) and L,(K)
on finite-dimensional subspaces. Similarly we may write

) N(h) Ny
(3.9 las,ilone, = _21 laale, = ¢ ZIJ [D a,(x)]* dx <
i= /= G,
N(h)
< ¢, max [D ji,(x)]* mes (G)) <
i=1 xeK;*
N(h)
< ch* Y sup [D F*™'(x)] max [D p{(x)]? < ch? Z “ A(z>H2
i=1 xeK;* R%eR

making use of (2.19) and of the fact that D is bounded as a linear operator on a finite-
dimensional space. The remaining estimates are the same as in the previous case.
We obtain

(3-10) Hﬂ1,1”522\9h = Ch"lv‘l”gzz.,-

Lemma 7. For any fi, € V(h) it holds
61 lilsoas S Hlila
(3.12) |t 1 law.00 = b |,
where A(Q, Q,) = (2\Q,) U (2,\ Q) and c is independent of h.

Proof.
la:lie.e0 = |82, + [E:]o0e -

The first term has been estimated in (3.8), the second one can be treated similarly.
(3.12) follows from the estimate (3.10) by an analogous way.
Using the same approach, we can show that -

(3.13) [w2]lane = ch¥?|w,]q, Yo, e V(h,) = Wy *(%2y)

(3.14) Hw2,2”9,.\!2 = Chl/z““’Z”Q;.‘
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The estimate (3.13) can be improved on the basis of Lemma 6 and the inverse inequal-
ity (cf. (3.20") below).
The main result of the section is the following

Theorem 7. Let the extended solution u of (3.1) belong to W?*(Q), the solution

2% = (29, 23) of (1.12) be extended on Q and I*e V(h, h,) denote its Galerkin
approximation.

Then
”IO = Mun, £ ch"llullp,n + ch[[|ufls,0 + nf“n] >
where
(3.15) 6 =min[l,e] for p=3,

6 =min[2,¢] for p=4,
|y =min[2,3 + ¢].

Proof. Using the definition of | . |4 q,, (3.2), (3.3) and the properties of approxima-
bility by the space V(h, h,), (cf. (3.5)), we show easily that

(3.16) inf [|2° — @lls.0, S ch’|ul,.0

eV (h,h2)

where 6 is defined in (3.15). Now
IEQII(ZO - Zh; CO)I . Sup lgnh(zo - Ih; d))‘

sup ~
wecll}?;l?hz) ” w”h’hz d)eﬂ;z;l?hz) Hw”hyhz

As @, = QU (Q,N 2)\(2\ Q,), we may write on the basis of (2.21)
Bo,(1° = ¥ @) = Bo, (1% @) — [ &]a, =
= —B\0,(1°% @) + Bo(1% @) +
+ B2’ @) + [f; @laa, — [ @)o = [f; @loma -

EQ(IO; fb) = [fs ‘I’]n

Inserting

we obtain finally

(3.16) sup E““(Io~_ 20 < sup IEM’L(—IO;(I))I+
I TR A L
+ sup @M + sup |[ﬁf‘~’]9\9h‘ + sup [Jz;fb]n,.\nl.
7O T A L

We show the estimates for the first and third term. According to (1.10) we may write
(3.17) B\, (2% @) = 11,0041 B1) + 31,000,725 B1) —

- du,g\nh('{?; (7’2) - dzz,n\nhag; 652) .
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Let Q° > Q. For sufficiently small h, @, = Qo

We esti
(3.17) by means of Lemma 7 and (3.2), as follows stimate the members of

(1) 110008358 5 Loy 161 +
G L1 INEY Y [P

2], g, max |2500) (mes (M@, Q) 4 chravany |

< ol + B2 ulls 0 @), .

@10, <

Here we make use of the estimates (cf. (3.8)) mes (A(Q, @,)) < ch* N(k). N(h) <
< ch™* and of the imbeding of W*%(Q°) into C(Q").(Si(mglar'i)}? = e, e =

(3.19) | 21,000,042 B1)| < 25 2] ac@,00| 51 1 | om0y +
+ %2l ac.0n [Brilacon = B + B2+ Ju]ly o 18] »
(320) | 12,000,405 B2)| < b 29 1 |ace .0, | B2 2]l a0 +
+ |1 1la@.en [B2]lamon = b ulz0 [B],h, + 22,1 ac.00 |B2]acon

by virtue of the Friedrichs inequality

[82]l0 = 1®2]ar < €] @2 z]a = ], 1],

with ¢ independent of h, @,.

To estimate || @, a0, oy = o2 e we use Lemma 6. We know that dist (T, I';) <
< ch® Inserting 1 = ch® and defining (w,), as in Lemma 6, we obtain from (3.6)

(3207 ”“’2"9».\9 < |(o22) hll2n < Chsnwz[h,nh =
< ch?|ws]lq, £ ch*|w, ], < ch?|@]n,

using also the inverse inequality on @ and the Friedrichs inequality for w,. Con-
sequently, we have

]qu,n\n,.(l(x): 5’2)] = c(hsl2+£ + hz) ”“||3,9”Cb”h.hz :

As dn,,,\,,h(}[g; @;) = 0 follows from @&, =0 on 2\Q, we estimate only
A 33,0,0- Note that

b3}
o (ud,)dx =0
.[nh\n 0x, (uwz) x
because u = 0 on I and &, = 0 on I',. Thus using also (3.12), (3.14) we derive
ldzz,n,.\n(’,[ wz)] = |(12 25 “’2 z)l + “l{(zz 23 wz) + (1(2); 6’2-2)}l s

< ch*?*eu ;.0 |@2]a, + ¢ mes (A(Q, 2,)) max Exl (x)' 152.2] ana +
xe° 2
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+ ch™1-e =

0%u ou ou
Rt (=@, )+ (—; @, )+ (u;@,y,) + B[ —; @
e N L R R L)

< (B2 + 1) uls.0 @ + ch®lu]2.0 @210, +

+ e max| S (x) mes (A(@, @) h2| 2o, < A2 + 1) [uls 0 [0]a,
xef° 2 |

Finally

(3-22) [/ @laan| £ ch®* | f]la@.0m [|B1,1lac.0m +

+ ' aion |@2.2]a@0m + [Flac.on [92]ac.0n =
s om0+ 1) | f]lo [@]nn, -

The assertion of Theorem 7 follows from (3.16), (3.16) and the estimates of the
form (3.17)—(3.22).

Theorem 8. Let u be the extended solution of (3.1), ue W»2(Q°), 7" = (M}, h) e
€ V(h, hy) the solution of (2.21). Then it holds

ou _ b
0x,

ou oI
— — 22+ |u = Thq, <
ox,  ox, lu 22

2

(3.23)

Qn

< chul0 + ek [fuls0 + |£]o]

where ¢ is defined in (3.15) and y, = min [1 + ¢, 2].

Proof. We may write

ou ou ol _fou _wl .

0x, on 0x,  0%3|q, 0x, o
h*c*u  ou Al htte

o e
g Ox3 0x;  0%3|g, oo

o i o " h1+s o . h1+e
= |41 = Aifq, + |72,2 = 73,2]0n + T lullz.0 < 12° = 2, + w 11 -
0 )

Using Theorem 7 and Friedrichs inequality we obtain (3.23).

Remark 3.1. From the practical point of view it is important, that a finer mesh
can be used for A, than for 1,. Let us illustrate the approach on the preceding example,
thus showing also how to deal also with more general cases.

First we carry out the “triangulation” 7, of the region Q and construct the space
V,(Q4,) with P = P,. A finer “triangulation” 7, of the domain Q,, can be obtained
by a triangulation of every element K; € 7,,. Here the “triangulation” of a curved
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element K; € J,, is to be comprehended in the sense of part A of the preceding
Section, i.e. the curved boundary (which is now described by a quadratic function)
is reproduced exactly.

We set

V(@) = {ve C(8,,), v|x, € P, VK;e T,

where P is defined by means of P = P, through (3.2).
The rate of convergence, analogous to (3.23), follows by the same line of thought
as previously.
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Souhrn

KRIVOCARE PRVKY VE SMISENE METODE KONECNYCH PRVKU,
BLiZKE ROVNOVAZNEMU MODELU

JArROSLAV HASLINGER, IvAN HLAVACEK

V [1], [2] autofi odvodili novy typ smiSené metody koneénych prvkil, spocivajici
v tom, Ze Galerkinovy aproximace jsou vektorové funkce, jejichZ (n — 1) sloZek
konverguje k vybranym slozkdm co-gradientu feSeni a zbyvajici slozka k feSeni
samotnému. Tato prdce je pokraCovdnim [1]. Studuje se moZnost pouZiti dvou typl
kfivocarych elementl, zavedenych jednak podle [3] a jednak v [4]. V posledni &dsti
je postup ukdzdn na modelovém piikladu a je odvozen ¥dd konvergence Galerki-
novskych aproximaci. ‘
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