Previous |  Up |  Next

Article

Summary:
In this paper boundary value problems for the system of nonlinear partial differential equations for displacement, governing the equilibrium state of thin elastic plates, are solved. The abstract calculus of variarions is used.
References:
[1] Knightly G. H.: An existence theorem for the von Kármán equations. Arch. Rat. Mech. Anal., 27 (1967), 233-242. DOI 10.1007/BF00290614 | MR 0220472 | Zbl 0162.56303
[2] Knightly G. H., Sather D.: On nonuniqueness of solutions of the von Kármán equations. Arch. Rat. Mech. Anal., 36 (1970), 65-78. DOI 10.1007/BF00255747 | MR 0261835 | Zbl 0188.57603
[3] Langenbach A.: Über Gleichungen mit Potentialoperatoren und Minimalfolgen nichtquadratischer Funktionale. Math. Nachr., 32 (1966), 9 - 24. DOI 10.1002/mana.19660320103 | MR 0209912 | Zbl 0154.39903
[4] Morozov N. F.: Nonlinear problems in the theory of thin plates. (Russian). Vestnik Leningr. Univ., 19 (1958), 100-124. MR 0102224
[5] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. MR 0227584
[6] Nečas J., Poracká Z., and Kodnar R.: Remarks on a nonlinear theory of thin elastic plates. Matem. časopis, 20 (1970), 62-71. MR 0303085
[7] Sharij Ju. I., Jurchenko A. S.: Dirichlet's problem for equations of Karman's type. Diff. urav., 4 (1968), 1713-1719. MR 0235279
[8] Vorovich I. I.: On the existence of solutions in nonlinear theory of shells. (Russian). Izv. Akad. Nauk, ser. mat., 19, no. 4 (1955), 173-186. MR 0072369
[9] Vorovich I. I.: On some direct methods in nonlinear theory of shallow shells. (Russian). Prikl. Mat. Mech., 20 (1956), 449-474. MR 0081672
[10] Vorovich I. I.: On the existence of solutions in nonlinear theory of shells. (Russian). Dokl. Akad. Nauk, SSSR, 117 (1957), 203-206. MR 0093988
Partner of
EuDML logo