Article
Summary:
This article deals with the estimate of exactness of finite element method which is applied to homogeneous non-elliptic boundary value problem. It is supposed that the respective differential operator of the problem is a sum of elliptic and a "perturbed" operator. A sufficient condition for this "perturbed" operator is given in order that the convergency of finite element method may be maintained.
References:
[1] J. L. Lions E. Magenes: Problèmes aux limites non homogenès et applications. Dunod, Paris 1968.
[2] G. Strang G. Fix: A Fourier Analysis of the Finite Element Variational Methods. (to appear)
[3] S. G. Michlin: Variacionnyje metody v matěmatičeskoj fizike. Gostěchizdat, Moskva 1957.
[5] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
MR 0227584