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ELLIPTIC BOUNDARY VALUE PROBLEMS WITH NONVARIATIONAL
PERTURBATION AND THE FINITE ELEMENT METHOD

VLADIMIR JANOVSKY

(Received January 18, 1973)

I. INTRODUCTION

We shall consider boundary value problems of the type Pu = f on a bounded
domain Q = R, with homogeneous boundary conditions B;ju = 0 on I' (the boundary
of Q,j=1,...,m B; are linear differential operators and P = L + K where Lis
an elliptic operator and K a “‘small” peturbation. A numerical solution of this problem
by “classical” Galerkin’s method is investigated e.g. in [3]. Furthermore, our problem
without the perturbation K is solved in [2] (this means that P = L). The method
described in [2] (the so called finite element method) will be generalized to the
problem with the perturbation. We obtain a slightly more general method than that
proposed in [3].

The task of this paper is:

a) to formulate the properties of K in such a way that they cover as many practical
cases as possible (see paragraph IV)

b) to define a weak solution of our problem and to find a necessary and sufficient
condition of solvability (see paragraph II)

c) to apply the finite element method and to prove some facts concerning the
convergence of this method (see paragraph III). @

We start with some standard notation:

1) Qis a bounded domain in R,, I' is the boundary of ;
2) H'(Q) (1is a real number) is a Sobolev’s space — see [1];
3) ||-]l:is a norm in H(Q) — see [1];
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4) if u, ve H%(Q), then (u, v) is an inner product in L,(Q);

5) H™!(Q) is isomorphic with (H(Q))’;

6) ge HY(Q), o € H(Q), § e (HY(Q))' is isomorphic with g; we denote the value
of the linear functional § at the point ¢ by [g, ¢]; if g € HY(Q), then [g, ¢] =
= (g, ) — see [1];

7) let T: H'(Q) — H¥(Q) be linear and bounded. Then

= s L
||u]|»*0ue2(T) ”u”,

We shall solve problems (1) and (2):
(1 Lu+ Ku=f on Q,

where f is a distribution on Q and Lu = ), D¥a,D'u) and K : H(Q) — HY(Q),
[kl 1 <m

g > —m is linear, bounded, a;, € C*(Q);
(2 Bu=0 on I, i=0,...,m-—1

where Bu = Y, b;;Diu, 0 £ m; £ 2m — 1, b;; € C*(I'). Let us define the classical

solution of(l)lltl& (2) as a function u € C*™(Q) n C*™~'(Q) which obeys (1) in the sense
of distributions and (2) simultaneously. Let V= {u|ue C*™(Q)n C*" (Q),
Bu=0onTl,j=0,..,m— 1} and W=V where the closure V is understood in
the norm |||, We shall say that Wis the space of weak solutions. W is well-known
to be a Hilbert space with the norm |||, and Hg(Q) =€ W = H™(Q).

We keep two assumptions (A) and (B) which are used usually for solving (1) & (2)
without a “perturbation” (i.e., when Ku = O forallu e W):

Assumption (A): If ue Wn C*"(Q) n C*"~!(Q), then:

) i g) = | %=1 )D'u(x)Dto(x) dx =

= (Lu, ¢) = [oLu(x)e(x) dx for all p € W,

b) Bu=0onIfori=0,...,m—1.

Assumption (B): There exist positive constants 3 and 6 such that:
a) a(u, u) = 8ulz,

b) a(u, v) < 0||ul,, [|v],, for all u, ve W.
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II. WEAK SOLUTION OF THE PROBLEM. GALERKIN'S METHOD

Definition 1. Let f € H™™(Q). Then u is a weak solution of (1) & (2) if u is a solution
of the following problem:

(3) ueW; alu, @) + [Ku, o] = [/, ]
forall peW.

Remark (the sense of generalization): if u € W C*™(Q) n C*"~'(&) is a solution
of (3), then u is a classical solution of (1) & (2). Conversely, if u is a classical solution
of (1) & (2), then u solves (3), too.

Let us recall two well-known theorems (see [1]):

Theorem 1. Let I' € C®. Then there exists an operator T such that:
a) T: H™"*(Q) - H"*¥(Q) n Wis linear and bounded for each & > 0;

b) if Y € H5(Q) (where s < m), then u = Ty € W H>"~%(Q) is a unique solu-
tion of the following problem:

(4) ueWw; a(u, ) = [y, ¢] forall ¢peW;

c) there exists such a constant C, independent of s that | Ty zm-s < Co|¥||-

d) there exists T™', the inverse operator to T, and T™':H" Q)W —
— H™™*(Q) is linear and bounded.

Proof. The statement of Theorem 1 is in the case ¢ = 0 a consequence of the
Lax-Milgram theorem. In the case ¢ = m, a) and b) follows from Theorem 5.2 Ch. 2
[1]. To prove a), b) for ¢ € (0, m) we use Theorem 5.1. Ch. 1 [1]. According to this
theorem the operator T: [H™™, H°], - [W, W n H*™], is bounded for all 6 € (0, 1).
This completes the proof.

Remark. The assumption about I is too strong. The assertions which follow make
use only of the fact that the assertion of Theorem 1 holds and do not depend on the
smoothness properties of I'. Therefore, we may assuine only that I" has such properties
that the assertion of Theorem 1 holds. In this way our results may be generalised.

Theorem 2. (Rellich): The operator T:H "*Y(Q) —> H™**(Q) where »x < ¢ is
compact. ® ’

Theorem 3. The operator TK maps W into W and is linear and compact. The
solution u of the problem (3) for an arbitrary f € H™"(Q) exists and is unique if and
only if —1¢ P,(TK) (the point spectrum of the operator TK); furthermore, u =
=(I + TK)"' Tf.
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Proof. Evidently, the operator K : W — H4(Q) is bounded. Since T: H="*¥(Q) — W
is compact for & > 0 (according to Theorem 2) and since g > —m we conclude that
T:HYQ) - W is compact. Hence TK : W— W is compact. Since (according to
Theorem 1) T:H™"(Q) —» W is a one-to-one mapping, the rest of the statement
follows as an evident consequence of the Fredholm alternative.

Remark (regularity of solution): Let fe H(Q), t = —m. Then ue Wn
A H2m*min(ta) (Q) Indeed: u solves (3), hence u + TKu = Tf;if f € H(Q), then Tf €
e Wa H**(Q) and if u € W, then TKu € W n H>"*9(Q).

Definition 2. Let S, = W be a closed subspace of H™"™(Q). We shall say that u,
is Galerkin’s approximation of the solution u of problem (3) if

(5) upe Sy alu, ) + [Kuy, o] = [, ¢]

forall p e S,.

Remark: A remark on the actual calculation of the value [ Ku,, ¢] will be broght
in paragraph 4. Now we formulate the problem (5) (similarly to the problem (3)) as
the problem of solving an operator equation. The procedure used in [3] for the
analysis of the “classical” Galerkin’s method will be used now.

Definition 3. Denote by P, and P, the projection of W and H‘"‘(Q) respectively
onto S, defined as follows: if ue W then Pue S, and a(u — Pu, @) = 0 for all
@€ S, and if ue H™(Q), then Pyu e S, and [u — P, ¢] = 0 for all p €S,

Theorem 4. Let f € H""‘(Q). Then u, € W solves the equation
(6) (I + P,TK)u, = P, TP,f
if and only if it solves the problem (5).

Proof. Let u, € W be such that (I + P,TK)u, = P,TP,f.PutU = TP,fand U, =
= TKu,. From the definition of the operator T it follows that a(U, @) = [P,f, ¢]

and a(U,, ¢) = [Ku,, ¢] for all ¢ e W. Since we assume that u, = P(TP,f —
— TKu,) we have u;, = P,(U — U,). This implies

a) u, €S,

b) a(uy, 9) = a(U = Uy, 9) = a(U, 9) — a(Uy, @) = [Pif, ¢] — [Kuy, @] =
= [f, ¢] — [Ku,, @] for all ¢ € S,. Hence u, solves the problem (5).

Proof of the converse assertion is analogous. °

Galerkin’s method of the solution of (3) is based on the following principle: Let
{Si}heco,1) be a system of subspaces of W. For each h €(0, 1) let u, be Galerkin’s
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approximation of u on S,. Let the system {S,} approximate W in a certain sense.
Then we expect the convergence of u, to u. The finite element method is a modifica-
tion of Galerkin’s method which is based on a special choice of the system {S,}. We
shall demand that the system {S,} should be in class #" (see the following definition).

Remark. In our terminology the concept of Galerkin’s method is slightly more
general than the classical one shown e.g. in [3] but it coincides with the present termi-
nology used e.g. in [2].

III. THE RATE OF CONVERGENCE
In this paragraph we suppose that —1 ¢ P,(TK).

Definition 4. We say that the system {S,,},,e(o,l) of subspaces S, of the space W is
in the class " where an integer r > m if:

a) S, is closed for each he (0, 1) in H™™(Q);

b) there exists a constant C so that for any we W there exists w, € S, such that
if we W~ HY(Q) where | = m, then

(7) Iw = wills = Cllwl B0

for —-m £ s £ m. °

Let us suppose in the following that {S,},cc0.1) Is in the class &

Lemma 1. There exists a constant C, such that
(8) ”ﬁh _ I”sl < Clh min(r—m,m—s) +min(r—m,l —m)
forl>m, —m < s < m.

Proof. Let we Wn HY(Q). Since a(w — P,w, ) = 0 for all ¢ € S, we have

) a(w — Pyw, w) = a(w — Pw, w — ¢) =

=a(w — Pw, w — P,w) forall ¢esS,.
Using the condition (B) we can get |
(19) Iw = Puwlz < 2 I = Pl [ = ol
forall p e Sh.
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According to the assumption that {S,,};.E(o,l) is in the class &", there exists w, € S,
such that |w — w,|,, < C|w], h™™""~™. Hence

(11) Iw = Bl < cg [ e
and
(12) I = Pylms = sup Iw = Pvl o 0 pminerm
[Iwlj1%0 ”w“, 3
weW AnHY(R)

Now we define a bilinear form a*(u, v) on W:
(13) | a*(u,v) = a(v,u); u,veW
Evidently it follows from the assumption (B) that
() a*(,w) 2 9|2
a*(v,w) = 0[wl, o]l

for all v, w e W.

We can say that the assumptions of Theorem 1 are satisfied and this implies the
following assertion: There exists an operator T* such that for each ¢ = 0, T*:
: H " 5(Q) > H™+4(Q) n Wis linear and bounded. If Y € H™5(Q), s < m, then z =
= T*) e Wn H*"~5(Q) is a unique solution of the problem -

(14) a*(z, ¢) = [y, ¢] forall geW.

Simultaneously, there exists a constant C, independent of s such that

(15) [T am—s < Coll¥] -

We can use these facts as follows: Let us put ¢ = w — P,w in (14); we obtain
(16) a*(T*y, w — Pw) = [y, w — Pw].

Since a(w — P,w, ¢) = 0 for all ¢ € S,, it holds in accordance with (13)

a*(T*y, w — Pow) = a(w — Pw, T*Y) =
=a(w — Pw, T*Y — @) = a*(T*y — ¢, w — Pw)

for all ¢ € S, If we substitute from this expression to the left hand side of the equation
(16) we get

(17) [V, w — Pow] = a*(T*y — @, w — Byw)
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for all ¢ € S,. If we use (B*) we obtain
(18) [y, w — Pow] < 0|T* — @], |w — Pyw|, forall ¢es5,.

According to Definition 4 there exists such w, € S, (for each h e (0, 1)) that |T*¥ —
= Willm £ C[ T3y h™"2m=9=" T accordance with (15) it is | T — wy|m =
< CCol| -5 hminer-2m= - ™ We can estimate the right hand side of (18) using this
inequality and (11). This yields

(19) [ w — Pow] < ccog 1] o] mintr=mm=s) 4 minte=m=m)

We defined [, w — P,w] as the value of the functional i ({f e (H%(Q))’ is isomorphic
with € H™%(Q)) at the point w — Pyw e W < H¥(€). It means that |[y, w — Pw]| £
= ||l//H_S ||W - F,,WHS. From this it follows immediately: if we denote by z€
e (H™%(Q)) the functional which is isomorphic with w — P,w, then [y, w — P,w] is
the value of the functional z at the point y. The norm of z equals |w — Pywls.

Hence
(20) ”w _ F)hWH = sup [_lk, w — PhW] < Cluwlllhmin(r—m,m*—s)+min(r—m,l~m)
wi-oro ] -s
where
0
C, = CCO§.

This inequality holds in accordance with (19). It follows from (20) that

(21) ”I . Ph”s,l — sup H(I - Ph W”s < C hmm(r m,m—s)+min(r—m,l—m)
o ]

which was to be proved.

The following lemma guarantees the existence and the uniqueness of a solution of

(6) and (5).

Lemma 2. There exists hy €(0, 1) such that for 0 < h < hy the operator (I +
+ P, TK)™': S, - S, exists and
(22) |+ PTR)™ o =

3 (1 + TK) ,
=T 00+ T o 7K o g 1P — Tz

428



Proof: It is easy to verify that the following identity holds:
(23) I+ P, TK = (I + TK)(I + (I + TK)™' (P, — I) TK).

We know that (I + TK)™! exists and is bounded; we can prove that (I + (I + TK)™*.
(P, — I) TK)™" : W - Wexists for 1 small enough. In fact, TK : W — Wis bounded
(compact), hence P, — I : W— W is bounded (according to he(0,1)) and (I +
+ TK)™': W— Wis bounded. Hence the operator (I + TK)™* (P, —I) TK : W —
— Wis bounded. The following assertion is well-known: if

(24) [+ TK) ™" (P, = I) TK||,ym < 1
then there exists (I + (I + TK)™' (P, — I) TK)™' : W— W, it is bounded and

(25) [+ (I + TK) " (P, — I) TK)™!|,m <
< (1= |1+ TR (B, = 1) TK )"

We can verify the validity of (24) for h sufficiently small:

(26) (2 + TR)™ (P, — 1) K], <
< |0+ TR o [P = e [ TR g

if we take h, small enough such that [P, — I|,omiq < (| + TK) ™| -
NTK | 2m+qm)™" for 0 < h < hg, then the condition (24) is satisfied for such I’s. Let
us turn back to the equation (23). Both operators on the right hand side of (23) have
bounded inverses in W. Hence the operator I + P,TK has a bounded inverse in W.
The estimate of its norm (22) follows from (13), (25) and (26). It is evident that
(I+P,TK)™":S,> S, e

The following identity will be useful for the error estimates of Galerkin’s approxi-
mations u, of the exact solution of (3).

Lemma 3. We have

(27) u—u, =+ TK)"(T— P, TP, f +
+ (I + TK)"* (P, — I) TK(I + P,TK)™* P, TP,f
where u = (I + TK)™' Tf, u, = (I + P,TK)™" P,TP,f, h < h, (see Lemma 2).
Proof. u —uw, =(I + TK)"" Tf — (I + P,TK)™* P,TP,f = (I + TK)™*.
ATf — P,TP,f) + (I + TK)™* — (I + P, TP,)™") P,TP,f; (I + TK)™* — (I +

+ P, TK)™* = (I + TK)"* (P,TK — TK) (I + P,TK)"'. Hence u — u, =
=(I+TK)"" (T - P,TP,) f + (I + TK)"*(P,TK — TK) (I + P,TK)™* P,TP,f. ®
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Lemma 4. There exists a constant C, such that
(28) ”T__ ﬁhTPh"sl é Czhmin(r~m,m+1)+min(r—m,m—-s)
wherel > —m, —m < s £ m.

Proof. In [2] the problem (3) has been solved without the pertttbation K. Hence
u = Tf, u, = P,TP,f. The following estimate is proved there: if f € H(Q), | > —m,
—m < s < m, then ”u _ uh”s < CZ“f”l pminGr—m,m+ )+ min(r=m,m=s), Hence

(29) " Tf — FhTP,,f“s < C2“f”l Jyminr—m,m+1)+min(r~m,m—5)
Since
"T_FhTPh”sz= sup wff)_f_”f’
fe]llr{"ll\;;(on) “f “l

the estimate (28) follows immediately from the inequality (29). e
Now two error estimates are presented:

Theorem 5. There is a constant C; such that
(30) Hu _ uh“m < CBHfH: hmin(m+1,m+q,r—m) ,
feH'Q),t > —m; u, uy, are the corresponding solutions of (3) and (5).

Proof. From (27) we can conclude

(31) u—u, =+ TK)"'Qf
where
(32) Q = (T - B,TP,) + (P, — I) TK(I + P,TK)"* B,TP,.

We can show that
) [ £ Sytmnirsemtar=n
where C; is a positive constant. Indeed:
(34) [Qlne = IT = PiTPu,c+
+ |Pe = I zmeal TR 2msgm(I + PTE)™ |y | PiTPylm,e 5

because |P, TPy, < |T — PyTPy|m,: + | T|m,: then ||P,TP,|,,. is bounded ac-
cording to he(0,1) (|T|m, £ |T|mm and |T — B, TP,|,,. is bounded in ac-
cordance with (28)). We can use the inequalities (28), (8) and (22) to estimate
|T — P,TP,|m, and ||P, — I, 2m+, and (I + P,TK)™*|,, ... Then the validity of
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(33) is evident. Let us return to the equality (31). We can get: |u — u,,, < (I +
+ TE) ™ Y | Qe | £ If we set C3 = Cs[(I + TK)™ |, then the proof is
finished with regard to the inequality (33).

Remark. (optimality of estimate (30)): According to the remark concerning the
regularity of the solution of problem (3), there is a solution u € W H2m*min(t.a)
for each f e H(Q); if the function f has this smoothness, the estimate (30) is of the
order of the best approximation on the system {S,})c(0,1) in the class &” (see [2]).

Now we can slightly strengthen the assumptions on K. A possibility of error
estimates in ‘““worse’” norms is one of the consequences.

Theorem 6. Let us consider K : H" %(Q) —» Hi7%(Q) for each 0 <e<m+ ¢
Then there is a constant C, such that

(35) “u _ uh”s é C4”f”, hmin(r—m,m~s)+min(r—m,m+t,m+q)

where f € H'(Q), t> —m; —q < s < m; u and uy are the corresponding solutions
of the problem (3) and (5).

Proof. We can show that there exists a constant C, such that
(36) “Q” . < C"4hmin(r—m,m-s)+min(r—m,m+t,m+q)
s,t = .

Indeed:
Iels, = |7~ P,TP[,, + ‘
4 1P = sz I TK [ 1+ BTR) o [BTP, e

estimating the right hand side of this inequality by means of (28) and (8) and (22)
we get (36) immediately.

If m > s > —gq, then TK : H(Q) —» Wis bounded and considered as an operator
TK : H(Q) - H¥(Q) it is compact. Hence (I + TK)™': H(Q) —» H(Q) which is
linear and bounded exists if and only if {(I + TK)u = 0, u e H(Q) = u = 0}.
However, if there exists u € H(Q) such that (I + TK)u = 0, then u € W because
TKu = —u and TK:H%(Q)— W. The operator (I + TK)™':HY(Q)— H¥(Q)
(linear, bounded) exists if and only if the operator (I + TK)™': W — W exists,
which we suppose in thes whole paragraph. If we set C, = C,||(I + TK)™*{,.
then the estimate (35) follows from (31) and (36) immediately.

IV. EXAMPLES
Remark. A concrete application of the method can fail in calculating [Ku,, ¢]
where u,, ¢ € S,. This complication can be easily avoided by introducing the assump-

tion that K : S, » L,(Q). The following examples show that this assumption is
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realistic. We could use the procedure using besides the system {S,} another system
{8,} too. We could require S, = Wand if u,e S, and ¢ € 5, then Ku,p € L,(Q).
Under some assumptions on the relation of S, and S, and of the bilinear form
a(-, -) — see [4] — it is possible to find the estimates similar to (30) and to (35) for
Galerkin’s approximations u,, € S, defined for each h € (0, 1) as a solution of the fol-
lowing problem: a(uy, ¢) + [Kuy, ¢] = [f, ¢] for each ¢ € §,, where [Ku,, ¢] =
= (Kuy, ¢). This approach, however, is not investigated in this paper.

Example 1. —y"(x) — 4 y(x)[x** = f(x), x € (0,1) = @ y(0) = y(1) = 0. Let for
each f e H™'(Q) a weak solution of this problem exist for A = 4,. To faciliatete the
application of our method let us note that Ly = —y", Ky = —1, y[x**, W =
= Hy(Q), a(u,v) = [gu'(x)v'(x)dx. Since Ao/x**e H™'*(Q) the operator K :
: Ho(Q) — H™'*(Q) is linear and bounded. Hence Theorem 5 applies; e.g. if we use
piecewise linear splines on @ (this system is in the class &%) we can get the estimate
[u — u,|, = O(hA™™/21+%) for t > —1, fe H(Q).

Example 2. Let us consider problem (3) where Ku = 2 Y. b,D%, b, e H(Q).
al|<m

Hence K : H"(Q) - H%(Q) = L,(Q) is linear and bounded; qI:O. It is easy to show
that the assumptions of Theorems 5, 6 are satisfied. We can obtain the estimate
[u — s < C4|f], pminCmmm=tmint=mmm¥D where 0 < s < m; eg. if m=1
then means by of Guglielmo’s splines (piecewise linear on the triangulation),
which are in the class &2, we can obtain the estimate [u — u,[, <
< Cy||f | hminto1 =9t min(LID for 0 < s < 1. We can see that a “smooth pertur-

bation’ does not affect the rate of convergence desired in [2] for the unperturbed case.

Example 3. Let us consider problem (3) where [Ku] (x) = 4 [o #(x, y) u(y) dy
where #(x, y) is a Hilbert-Schmidt kernel on @ x Q. Then K : H""%(Q) —» H°(Q)
for0 < ¢ < m.

Hence the assumptions of Theorems 5,6 are satisfied.
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Souhrn

ELIPTICKE OKRAJOVE ULOHY S NEVARIACNI PORUCHOU
A METODA KONECNYCH PRVKU

VLADIMIR JANOVSKY

Necht homogenni okrajova tloha Ize pfevést na nasledujici problém: Hledame
u e Wtak, aby a(u, ) + [Ku, ¢) = [f, ¢] pro viechna ¢ € W, kde: W je uzavieny
podprostor H™™(Q)a Hy(Q) =« W = H™(2); a(u, ¢) je W — elipticka bilinarni forma;
K : H"(Q) - HYQ), g > —m; [z, ¢] je hodnota linearniho funkcionalu isomorfniho
s funkei z € H™™(Q) v bodé ¢ € H™(Q). Necht uvedena tloha je jednoznaéné fesitelna
pro viechna f e H™™(Q). Déle uvazujeme systém {S,},.,1, podprostorii S, prosto-
ru W, ktery ma jisté aproximaéni vlastnosti (patfi do tfidy &"). V Prikladech je uka-
zano, Ze tyto vlastnosti maji také obvyklé , kopeckovés funkce uZivané v metodé
koneénych prvkii.

Clanek se zabyva odhadem ptesnosti Galerkinovy metody, aplikované na pod-
prostorech S,. Odhad zavisi na fadu nejlep$i aproximace prostoru W systémem
{Sh}neco.1) @ N3 g, tj. ,,kvalit&* poruchového operatoru.

Author’s address: Dr. Viadimir Janovsky, Matematicko-fysikdlni fakulta KU, Malostranské
nam. 25, 118 00 Praha 1.
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