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SVAZEK 18 (1973) APLIKACE MATEMATIKY ČÍSLO 6 

ELLIPTIC BOUNDARY VALUE PROBLEMS WITH NONVARIATIONAL 
PERTURBATION AND THE FINITE ELEMENT METHOD 

VLADIMIR JANOVSK^ 

(Received January 18, 1973) 

I. INTRODUCTION 

We shall consider boundary value problems of the type Pu = f on a bounded 
domain Q c Rn with homogeneous boundary conditions BjU = 0 on F (the boundary 
of Q), j = 1,..., m. Bj are linear differential operators and P = L + K where Lis 
an elliptic operator and K a "small" peturbation. A numerical solution of this problem 
by "classical" Galerkin's method is investigated e.g. in [3]. Furthermore, our problem 
without the perturbation K is solved in [2] (this means that P = L). The method 
described in [2] (the so called finite element method) will be generalized to the 
problem with the perturbation. We obtain a slightly more general method than that 
proposed in [3]. 

The task of this paper is: 

a) to formulate the properties of K in such a way that they cover as many practical 
cases as possible (see paragraph IV) 

b) to define a weak solution of our problem and to find a necessary and sufficient 
condition of solvability (see paragraph II) 

c) to apply the finite element method and to prove some facts concerning the 
convergence of this method (see paragraph III). • 

We start with some standard notation: 

1) Q is a bounded domain in Rn, F is the boundary of Q; 

2) H\Q) (I is a real number) is a Sobolev's space — see [1]; 

3) || • || - is a norm in Hl(Q) - see [1]; 
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4) if u, v G H°(Q), then (u, v) is an inner product in L2(Q); 

5) H~\Q) is isomorphic with (Hl(Q))'; 

6) g e H~l(Q), cp e Hl(Q), g e (Hl(Q))' is isomorphic with g; we denote the value 
of the linear functional g at the point cp by [#, cp"]; if g e H°(Q), then [a, <p] = 
= (#, <p) - see [1]; 

7) let T: Hr(Q) -» HS(;Q) be linear and bounded. Then 

II Til mn UTw|l* 
IH|s,r = SUP !j«ljr*o«e^(T) ||II||r 

We shall solve problems (1) and (2): 

(1) Lu + Ku = f on Q , 

where f is a distribution on Q and Lu = £ Dk(aklD
lu) and K : Hm(.Q) -> Hg(&), 

_ |*|,M£m 
g > — m is linear, bounded, akl e Cco(Q); 

(2) Btu = 0 on F , i = 0, ..., m - 1 

where B£u = £ btjD
Ju, 0 _ mt- = 2m — 1, b0- e C°°(F). Let us define the classical 

111 ^m* 

solution of (1) & (2) as a function u e C2m(Q) n C2m~1(Q) which obeys (1) in the sense 
of distributions and (2) simultaneously. Let V= {u | u e C2m(Q) n C2m~l(Q), 
BjU = 0 on F, j = 0 , . . . , m — 1} and W = V where the closure Vis understood in 
the norm || • ||m. We shall say that Wis the space of weak solutions. Wis well-known 
to be a Hilbert space with the norm || • ||m and Hm(Q) s W s Hm(.Q). 

We keep two assumptions (A) and (B) which are used usually for solving (1) & (2) 
without a "perturbation" (i.e., when Ku = 0 for all u e W): 

A s s u m p t i o n (A): If we Wn C2m(Q) n C2m~\Q), then: 

a) a(u, <p)=- £ f ( - \)^akl(x)Dlu(x)Dkcp(x) dx = 
|fc|.|-|£m 

= (Lu, cp) = §QLu(x)(p(x) dx for all <p e W, 

b) B,u = 0 on F for i = 0, ..., m — 1. 

A s s u m p t i o n (B): There exist positive constants # and 9 such that: 

a) a(«, u) 2: % | | * , 

b) a(u, y) ^ 6>J|u||m ||t.[|m for all u, u e JT. 
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II. WEAK SOLUTION OF THE PROBLEM. GALERKIN'S METHOD 

Definition 1. LetfeH~~m(Q). Then u is a weak solution of(i) & (2) ifu is a solution 
of the following problem: 

(3) ueW; a(u, cp) + \Ku, cp] = [ f cp] 

for all cp e W. 

R e m a r k (the sense of generalization): if u e Wn C2m(Q) n C2m~x(Q) is a solution 
of (3), then u is a classical solution of (1) & (2). Conversely, if u is a classical solution 
of (1) & (2), then u solves (3), too. 

Let us recall two well-known theorems (see [1]): 

Theorem 1. Let T e C00. Then there exists an operator T such that: 

a) T: H~m+e(Q) -> Hm+e(Q) n Wis linear and bounded for each e ^ 0; 

b) if \j/ e H~S(Q) (where s ^ m), then u = Tij/ e Wn H2m~s(Q) is a unique solu­
tion of the following problem: 

(4) ueW; a(u, (p) = [i//, cp] for all cpeW; 

c) there exists such a constant C0 independent of s that \\T\j/\\2m-s __ C0||t/J||_s; 

d) there exists T~l, the inverse operator to T, and T " 1 : Hm+B(Q) nW'-> 
-> H~m+e(Q) is linear and bounded. 

Proof. The statement of Theorem 1 is in the case e = 0 a consequence of the 
Lax-Milgram theorem. In the case e ^ m, a) and b) follows from Theorem 5.2 Ch. 2 
[1]. To prove a), b) for e e (0, m) we use Theorem 5.1. Ch. 1 [1]. According to this 
theorem the operator T: [H~m, H°]d ~» [W, Wn H2m]e is bounded for all 0 e (0, 1). 
This completes the proof. 

Remark . The assumption about F is too strong. The assertions which follow make 
use only of the fact that the assertion of Theorem 1 holds and do not depend on the 
smoothness properties of F. Therefore, we may assume only that F has such properties 
that the assertion of Theorem 1 holds. In this way our results may be generalised. 

Theorems (Rellich): The operator T: H~m+E(Q) -* Hm+X(Q) where x<e is 
compact. • 

Theorem 3. The operator TK maps W into W and is linear and compact. The 
solution u of the problem (3) for an arbitrary fe H~m(Q) exists and is unique if and 
only if —1 £ Pa(TK) (the point spectrum of the operator TK); furthermore, u = 
= (I + TK)-1 Tf. 



Proof. Evidently, the operator K : W~> Hq(Q) is bounded. Since T:H~m+E(Q) ~> W 
is compact for a > 0 (according to Theorem 2) and since q > - m we conclude that 
T: Hq(Q) -> W is compact. Hence TK : PV-> IV is compact. Since (according to 
Theorem 1) T:H~m(Q) -> PV is a one-to-one mapping, the rest of the statement 
follows as an evident consequence of the Fredholm alternative. 

R e m a r k (regularity of solution): Let / e H\Q), t> -m. Then ueWn 
n fl*m+imn(M) (fi) Indeed: u solves (3), hence u + TKu = Tf; iffe H\Q), then TfG 
e Wn H2m+t(Q) and if u G IV, then TKu e Wn H2m+*(.Q). 

Definition 2. Let Sh a W be a closed subspace of H~m(Q). We shall say that uh 

is Galerkin's approximation of the solution u of problem (3) if 

(5) uheSh; a(uh, cp) + [Kuh, cp] = [/, cp] 

for all cp e Sh. 

R e m a r k : A remark on the actual calculation of the value [Kuh, cp] will be broght 
in paragraph 4. Now we formulate the problem (5) (similarly to the problem (3)) as 
the problem of solving an operator equation. The procedure used in [3] for the 
analysis of the "classical" Galerkin's method will be used now. 

Definition 3. Denote by Ph and Ph the projection of W and H~m(Q) respectively 
onto Sh defined as follows: if u e W then Phu e Sh and a(u — Phu, cp) = 0 for all 
(p G Sh and if u E H~m(Q), then Phu e Sh and [u — Phu, cp] = 0 for all cp e Sh. 

Theorem 4. Let f E H~m(Q). Then uh e W solves the equation 

(6) (I + PhTK) uh = PhTPJ 

if and only if it solves the problem (5). 

Pr oof. Let uhe W be such that (I + PhTK)uh = PhTPhf.PutU = TP . fandU! = 
= TKuh. From the definition of the operator T it follows that a(U, cp) = [Phf, cp] 
and a(U1, cp) = [Kuh, cp] for all cp e W. Since we assume that uh = Ph(TPhf -
- TKuh) we have uh = Ph(U - Ux). This implies 

a) uh E Sh; 

b) a(uh, cp) = a(U - Ul9 cp) = a(U, cp) - a(Ul9 cp) = [Phf, cp] - [Kuh9 cp] = 
~ [ / <p\ — [Kuh, cp] for all cp e Sh. Hence uh solves the problem (5). 

P r o o f of the converse assertion is analogous. • 

Galerkin's method of the solution of (3) is based on the following principle: Let 
{Sh}he(o,i) be a system of subspaces of W. For each h E(0, 1) let uh be Galerkin's 
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approximation of u on Sh. Let the system {Sh} approximate W in a certain sense. 
Then we expect the convergence of uh to u. The finite element method is a modifica­
tion of Galerkin's method which is based on a special choice of the system {Sh}. We 
shall demand that the system {Sh} should be in class ^r (see the following definition). 

Remark . In our terminology the concept of Galerkin's method is slightly more 
general than the classical one shown e.g. in [3] but it coincides with the present termi­
nology used e.g. in [2]. 

III. THE RATE OF CONVERGENCE 

In this paragraph we suppose that — 1 <£ Pa(TK). 

Definition 4. We say that the system {Sh}he^0}1) of subspaces Sh of the space W is 
in the class £fr where an integer r>mif: 

a) S,, is closed for each h e (0, 1) in H~m(Q); 

b) there exists a constant C so that for any w e W there exists wh e Sh such that 
if w e Wr\ Hl(Q) where I = m, then 

0) Iw-w.l^Clwlh™^-* 

for —m^s = m. • 

Let us suppose in the following that {Sh}he(0>1) is in the class £fr. 

Lemma 1. There exists a constant Cx such that 

/o\ ||p arII <-* si 1 min(r — m,m — s) + min(r — m,l — m) 

for I > m, —m — s = m. 

Proof. Let w eWr\ Hl(Q). Since a(w — Phw, cp) = 0 for all cp e Sh, we have 

(9) a(w — Phw, w) = a(w — Phw, w — cp) = 

= a(w — Phw, w — Phw) for all cp e Sh. 

Using the condition (B) we can get 

(10) ||w - Phw\\m = - \\w - Phw\\m \\w - cp\\m 
XT 

for all <p e Sh. 
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According to the assumption that {Sh}he(o,i) is i n the class Sf, there exists wh e Sh 

such that ||w - wh\\m ^ C\\w\\, hmin(r-l)'m. Hence 

(11) | | v v - P f t w | | m ^ C ^ | H . | | , h m i " ^ ) - m 

and 

(12) \\l-Ph\Li= sup l ^ f k ^ C ^ ^ - - . 

Now we define a bilinear form a*(u, v) on W: 

(13) a*(u, v) = a(v, u) ; u, v e W 

Evidently it follows from the assumption (B) that 

(B*) a*(w, w) = $\\w\\m 

a*(v, w) = 0\\w\\m \\v\\m 

for all v,w e W. 

We can say that the assumptions of Theorem 1 are satisfied and this implies the 
following assertion: There exists an operator T* such that for each e _ 0, T* : 
: H~m+e(Q) -> Hm+e(Q) n Wis linear and bounded. If ^ e H~S(Q), s = m, then z = 
= T*^ G Wn H2m~~s(Q) is a unique solution of the problem 

(14) a*(z, )̂) = [ij/, <p] for all <p e W. 

Simultaneously, there exists a constant C0 independent of s such that 

(15) | |T*^| |2 m_ s = C0||iA||-s. 

We can use these facts as follows: Let us put cp = w — Phw in (14); we obtain 

(16) a*(T*ij/, w - Phw) = O , w - Phw] . 

Since a(w — Phw, q>) = 0 for all cp e Sh, it holds in accordance with (13) 

a*(T*\jj, w - Phw) = a(w - Phw, T*\j/) = 

= a(w - Phw, T*\jj - <p) = a*(T*\l/ - cp, w - Phw) 

for all cp G Sh. If we substitute from this expression to the left hand side of the equation 

(16) we get 

(17) |> , w - Phw] = a*(T*il/ - cp, w - Phw) 

All 



for all q) e Sh. If we use (B*) we obtain 

(18) ty, w - Phw] ti 0\\T*ils - <p\\m ||w - Phw\\m for all cp e Sh. 

According to Definition 4 there exists such wh e Sh (for each h e (0, 1)) that ||T**A "~ 
- wh\\m ^ C||F*iA||2m_s hminir>2m~s)-m. In accordance with (15) it is | |T*^ - wh\\m = 
<: CCo||iA||_s / ^ " ( ^ - * ) - - . We can estimate the right hand side of (18) using this 
inequality and (11). This yields 

( 1 9 ) fy, W - P„w] ^ CCo- | | *A | |_ S || W | | , J^'Mr-m,m-s) + min(r-m,l-m) ^ 

XT 

We defined [\j/, w — Phw~\ as the value of the functional </t ($ e (Hs(Q))f is isomorphic 
with ^ e H~S(Q)) at the point w - Phw e W cz HS(Q). It means that \[\j/, w - Pftw]| ;= 
^ | |^| |-s ||w — Pftw||s. From this it follows immediately: if we denote by z e 
e (H-s(Q))f the functional which is isomorphic with w — Phw, then [i/y, w — Phw~\ is 
the value of the functional z at the point ij/. The norm of z equals ||w — Pftw||s. 

Hence 

( 2 0 ) || W - PhwL - S U p ^ ' W " PhW] < c II II hmm(r~m,m-s) + min(r~m,l-m) 
v / 11 " I I * *• l l / l l — II II 

| |* | | -s*0 ||lA||-s 

where 

C\ = cc0 — . 
17 

This inequality holds in accordance with (19). It follows from (20) that 

t o A II r P II c n r \ ||V ~~ h) w\\s < s~< imin(r-m,m-s) + min(r-m,l-m) 
V Z V W1 ~ rh\\s,l — S U P J] J] ' = W " 

| | w | | , * 0 \\wh 
weWnHl(Q) " " 

which was to be proved. 

The following lemma guarantees the existence and the uniqueness of a solution of 
(6) and (5). 

Lemma 2. There exists h0 e (0, 1) such that for 0 :g h rg h0
 tne operator (I + 

+ PhTK)~l : Sh -> Sh exists and 

(22) Kl + P.TK)-1!^^ 

< l[(J + TK)-im,m  

1 - | ( / + TKJ-%^ ||TK||2m+9>m \\Ph - I\\m,2m+q 
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Proof : It is easy to verify that the following identity holds: 

(23) I + PhTK = (J + TK) (/ + ( / + TK ) " 1 (Ph - I) TK) . 

We know that (I + TK)~1 exists and is bounded; we can prove that (I + (I + TK)'1. 
. (Ph - I) TK)'1 : W-> Wexists for h small enough. In fact, TK : W-* Wis bounded 
(compact), hence Ph — I : W -> IV is bounded (according to h e (0, 1)) and (I + 
+ TK )" 1 : ™V-> Wis bounded. Hence the operator (I + TK ) " 1 (Ph - I) TK : W-» 
-> Wis bounded. The following assertion is well-known: if 

(24) | | ( I + T K ) - 1 ( P / l - / ) T K | | m , m < l 

then there exists (I + (I + TK )" 1 (Ph - I) TK )" 1 : W-+ W, it is bounded and 

(25) ||(/ + (/ + TK )" 1 (Ph - I) TK)-1]]^ <£ 

S (1 - ||(/ + TK )" 1 (P„ - /) T K ^ J - 1 . 

We can verify the validity of (24) for h sufficiently small: 

(26) ||(/+ TK)-l(Ph-l)TK\\mtm£ 

^ ||(/ + TK)'1^^ \\Ph — 7||m,2m + q |M^||2m + q,m » 

if we take h0 small enough such that \\Ph - /||m,2m+q < (||(/ + -/-&)""*||m,m • 
. ||TK||2m+g>m)~"1 for 0 < h ̂  h0, then the condition (24) is satisfied for such h's. Let 
us turn back to the equation (23). Both operators on the right hand side of (23) have 
bounded inverses in W. Hence the operator / + PhTK has a bounded inverse in W. 
The estimate of its norm (22) follows from (13), (25) and (26). It is evident that 
(/ + P / J TK ) - 1 :S / J ->S / J . • 

The following identity will be useful for the error estimates of Galerkin's approxi­
mations uh of the exact solution of (3). 

Lemma 3. We have 

(27) « - « » = - ( / + TK)-1 (T - PhTPh)f + 

+ (I +TK)'1 (Ph - I) TK(I + P.TK)-1 PhTPJ 

where u = (I + TK)'1 Tf, uh = (I + P^K)'1 PhTPJ, h g h0 (see Lemma 2). 

Proof. u - uh = (I + TK)-1 Tf- (I + P^K)'1 PhTPJ = (I + TK)'1 . 
. (Tf - PhTPJ) + ((I + TK)'1 -(1 + P.TP.Y1) PhTPJ; (I + TK)'1 - (I + 
+ P.TKY1 = (I + TK)'1 (P„TK - TK) (I + PhTK)-x. Hence u - uh = 
= (1 + TK)'1 (T - PhTPh)f + (I+ TK)'1 (PhTK - TK) (I + P^K)-1 PhTPJ. • 
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Lemma 4. There exists a constant C2 such that 

(28) || T - PhTPh\\s>l = C2/imi^~m 'm+0+min(r-m,m-5) 

where I > — m, —m^S — m. 

Proof. In [2] the problem (3) has been solved without the perturbation K. Hence 
u = Tf,uh = PhTPhf The following estimate is proved there: if f£ H\Q), I > - m , 
-m = s = m, then ||u - uh\s = C2\\f\\l /l^n(r-msm+o+min(r-m,m-5). Hence 

(29) \Tf - PhTPhf\\s S C2\f\i hmin(r-m'm+l)+mm(r-m>m-5). 

Since 

\T - PhTPh\\Stl = sup 
ll/||i*o 

/6WOH ' (ß ) 

\{T-PhTPh)f\\s 

the estimate (28) follows immediately from the inequality (29). % 

Now two error estimates are presented: 

Theorem 5. There is a constant C3 such that 

(30) ||u - uk\m = C3||f||, &»'•(»+'.»+«.'-»>, 

feH\Q), t > — m; u, uh are the corresponding solutions Of (3) and (5). 

Proof. From (27) we can conclude 

(31) u - uh = (I + TK ) - 1 Qf 

where 

(32) Q = (T - PhTPh) + (Ph - I) TK(I + P.TK)-1 PhTPh. 

We can show that 

(33) ||Q||m>- ^ c3/imin(w + f > m +^ ,-m ) 

where C3 is a positive constant. Indeed: 

(34) | | e | U i ^ \\T - PhTPh\\m,t + 

+ \Ph ~ ^||m,2m+q|| TK||2w+l?,w||(I + PfrTK)"1!!^ IPftTPftl^^ ; 

because \\PhTPh\\mtt = | | T - PkTPk\m,t + ||T||m>, then \PkTPk\m,t is bounded ac­
cording to he(0, 1) (\T\\mtt= ||T||w>m and \\T- PhTPh\m,t is bounded in ac­
cordance with (28)). We can use the inequalities (28), (8) and (22) to estimate 
I T - PhTPh\\m,, and \\Ph - I\\mam+q and ||(J + PhTK)-l\\m<m. Then the validity of 
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(33) is evident. Let us return to the equality (31). We can get: ||w — uh\\m ;g ||(f + 
+ TK)-%,m \\Q\\m,t ||j||(. If we set C3 = C3||(J + TK)~%>m, then the proof is 
finished with regard to the inequality (33). 

Remark, (optimality of estimate (30)): According to the remark concerning the 
regularity of the solution of problem (3), there is a solution u e W n #2»+min('»«> 
for each f e Hf(Q); if the function f has this smoothness, the estimate (30) is of the 
order of the best approximation on the system {Sh}he(0jl) in the class $fT (see [2]). 

Now we can slightly strengthen the assumptions on K. A possibility of error 
estimates in "worse" norms is one of the consequences. 

Theorem 6. Let us consider K : Hm~E(Q) -> Hq~E(Q) for each 0 ^ s = m + q 
Then there is a constant C4 such that 

(35) ||u - uh\\s ^ C4\\f\\t hmi^r~m^~^+mi^r~m'm+t'm+^ 

where f e H*(Q), t ^ — m; —q^s<m;u and uh are the corresponding solutions 
of the problem (3) and (5). 

Proof. We can show that there exists a constant C4 such that 

/-»/r\ II/III < C i)min(r-m,m~s) + min(r —m,m + t,m + t2) 

Indeed: 

| | e |k r -S \\T - PhTPh\\Sft + 

+ \\Ph ~~ ̂ ||s,2«+c3 H^^luw+cj^ ||(J + T ^ T K ) " 1 ^ ^ ||PftTPft||m>f; 

estimating the right hand side of this inequality by means of (28) and (8) and (22) 
we get (36) immediately. 

If m > s ^ — q, then TK : HS(Q) -> Wis bounded and considered as an operator 
TK : HS(Q) -+ HS(Q) it is compact. Hence (I + TK)"1 : HS(Q) -> HS(Q) which is 
linear and bounded exists if and only if {(I + TK) u = 0, u e HS(Q) => u = 0 } . 
However, if there exists u e HS(Q) such that (I + TK) u = 0, then u e W because 
TKu = -u and TK:HS(Q) -> W. The operator (I + TK)"1 : HS(Q) -> HS(Q) 
(linear, bounded) exists if and only if the operator (I + TK)"1 : W-> W exists, 
which we suppose in thes whole paragraph. If we set C4 = C4||(I + FK)""1^^, 
then the estimate (35) follows from (31) and (36) immediately. 

IV. EXAMPLES 

Remark . A concrete application of the method can fail in calculating \Kuh, cp\ 
where uh, cp e Sh. This complication can be easily avoided by introducing the assump­
tion that K : Sh -> L2(Q). The following examples show that this assumption is 
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realistic. We could use the procedure using besides the system {Sh} another system 
{§h} too. We could require §h c W and if uh e Sh and cp e §h9 then Kuhcp e L2(Q). 
Under some assumptions on the relation of Sh and §h and of the bilinear form 
a(% •) — see [4] — it is possible to find the estimates similar to (30) and to (35) for 
Galerkin's approximations uh e Sh defined for each h e (0, l) as a solution of the fol­
lowing problem: a(uh9 cp) + \_Kuh9 cp~] = [/, <p~] for each cp e §h9 where [Ku/,, cp] = 
= (Ku/„ (p). This approach, however, is not investigated in this paper. 

E x a m p l e 1. -y"(x) - X y(x)\x5'4 = f(x), x e (0,1) = Q y(0) = y(l) = 0. Let for 
e a c h / e H~1(Q) a weak solution of this problem exist for X = X0. To faciliatete the 
application of our method let us note that Ly = —y"9 Ky = —X0y\x5/4

9 W = 
= H\(Q)9 a(u9 v) = \l u'(x) v'(x) dx. Since X0jx

514 e H~1/2(Q) the operator K: 
: HX

0(Q) -* H~1/2(Q) is linear and bounded. Hence Theorem 5 applies; e.g. if we use 
piecewise linear splines on Q (this system is in the class <f2) we can get the estimate 
||u - uh\x = 0(hminl /2 '1 + f) for t > -\9feH\Q). 

E x a m p l e 2. Let us consider problem (3) where Ku = X £ baD
au9 baeH°(Q). 

\<z\^m 

Hence K : Hm(Q) -* H°(Q) = L2(Q) is linear and bounded; q = 0. It is easy to show 
that the assumptions of Theorems 5, 6 are satisfied. We can obtain the estimate 
||u - uh\\s ^ c4 | | / | | rh

m i n ( r"m 'w" s ) + m i n ( r^w 'm 'm + i ) where 0 ^ s g m; e.g. if m = 1 
then means by of Guglielmo's splines (piecewise linear on the triangulation), 
which are in the class 9>2

9 we can obtain the estimate ||u — uh\s ^ 
^ C4 | | / | | , hmin(U1"s)+min(1A + t) for 0 ^ S ^ 1. We can see that a "smooth pertur­
bation" does not affect the rate of convergence desired in [2] for the unperturbed case. 

E x a m p l e 3. Let us consider problem (3) where [Ku] (x) = X ffi J f (x, y) u(y) dy 

where Jf(x, y) is a Hilbert-Schmidt kernel on Q x Q. Then K : Hm~E(Q) -> H°(Q) 

for 0 ?g e ^ m. 

Hence the assumptions of Theorems 5,6 are satisfied. 
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S o u h r n 

ELIPTICKÉ OKRAJOVÉ ÚLOHY S NEVARIAČNÍ PORUCHOU 
A METODA KONEČNÝCH PRVKŮ 

VLADIMÍR JANOVSKÝ 

Nechť homogenní okrajová úloha lze převést na následující problém: Hledáme 
u e W tak, aby a(u, cp) + [Ku, cp) = [f, cp] pro všechna cp e W, kde: Wje uzavřený 
podprostor H~m(Q) a Hm(Q) c W <= Hm(Q); a(u, cp) je W - eliptická bilinární forma; 
K : Hm(Q) -> Hq(Q), q > —m; [z, cp] je hodnota lineárního funkcionalit isomorfního 
s funkcí z e H~m(Q) v bodě <p e Hm(Q). Nechť uvedená úloha je jednoznačně řešitelná 
pro všechna fe H~m(Q). Dále uvažujeme systém {Sh}he{0tí) podprostorů Sh prosto­
ru W, který má jisté aproximační vlastnosti (patří do třídy 9>r). V Příkladech je uká­
záno, že tyto vlastnosti mají také obvyklé „kopečkové" funkce užívané v metodě 
konečných prvků. 

Článek se zabývá odhadem přesnosti Galerkinovy metody, aplikované na pod-
prostorech Sh. Odhad závisí na řádu nejlepší aproximace prostoru W systémem 
{Sh}he(o,i) a n a q> tj- „kvalitě" poruchového operátoru. 

Authoťs address: Dr. Vladimír Janovský, Matematicko-fysikální fakulta KU, Malostranské 
nám. 25, 118 00 Praha 1. 
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